Transport in Porous Media

, Volume 118, Issue 1, pp 85–98 | Cite as

Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media

  • Ahmed Hammadi
  • Nasre-Dine AhfirEmail author
  • Abdellah Alem
  • HuaQing Wang


Short-pulse injection experiments are investigated to study the effects of particle size non-uniformity on the transport and retention in saturated porous media. Monodisperse particles (3, 10, and 16 \(\upmu \hbox {m}\) latex microspheres) and polydisperse particles (containing 3, 10, and 16 latex microspheres) were explored. The obtained results suggest considering not only the particle sizes but also their polydispersivity (particle size non-uniformity) in transport and retention. Although, the density of the suspended particles is close to that of water, results reveal a slow transport of particles compared to the dissolved tracer whatever their size and flow velocity. The recovered particles in the mixture experiments show that the retention of large particles (10 and 16 \(\upmu \hbox {m}\)) enhances the retention of small ones (3 \(\upmu \hbox {m}\)). However, the straining of 10 and 16 \(\upmu \hbox {m}\) particles in “mixture experiments” is smaller than their straining in “monodisperse experiments”. A linear relationship summarizing the simultaneous effect of particle sizes and flow velocity on deposition kinetics coefficient is proposed.


Suspended particles Porous media Particle size Particle polydispersivity Straining 



This work was supported by Région Haute Normandie_R2014-CPER-0094.

Supplementary material

11242_2017_848_MOESM1_ESM.pdf (326 kb)
Supplementary material 1 (pdf 325 KB)


  1. Ahfir, N.-D., Hammadi, A., Alem, A., Wang, H.-Q., Le Bras, G., Ouahbi, T.: Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. (2016). doi: 10.1016/j.jes.2016.01.032 Google Scholar
  2. Ahfir, N.D., Benamar, A., Alem, A., Wang, H.-Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76(2), 289–307 (2009)CrossRefGoogle Scholar
  3. Aim, R.B., Vigneswaran, S., Prasanthi, H., Jegatheesan, V.: Influence of particle size and size distribution in granular bed filtration and dynamic microfiltration. Water Sci. Technol. 36, 207–215 (1997)Google Scholar
  4. Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21(3), 573–586 (2013)CrossRefGoogle Scholar
  5. Auset, M., Keller, A.: Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res. 40(12), W03503 (2004)Google Scholar
  6. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  7. Benamar, A., Wang, H.-Q., Ahfir, N.-D., Alem, A., Masséi, N., Dupont, J.-P.: Flow velocity effects on the transport and the deposition rate of suspended particles in a saturated porous medium. C. R. Geosci. 337, 497–504 (2005)CrossRefGoogle Scholar
  8. Bennacer, L., Ahfir, N.D., Bouanani, A., Alem, A., Wang, H.-Q.: Suspended particles transport and deposition in saturated granular porous medium: particle size effects. Transp. Porous Media 100(3), 377–392 (2013)CrossRefGoogle Scholar
  9. Bonelli, S., Brivois, O., Borghi, R., Benahmed, N.: On the modelling of piping erosion. C. R. Mecanique 334, 555–559 (2006)CrossRefGoogle Scholar
  10. Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)CrossRefGoogle Scholar
  11. Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41, 3012–3024 (2007)CrossRefGoogle Scholar
  12. Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38(12), 1–12 (2002)CrossRefGoogle Scholar
  13. Brow, C.N., Li, X., Rička, J., Johnson, W.P.: Comparison of microsphere deposition in porous media versus simple shear systems. Coll. Surf. A Physicochem. Eng. Asp. 253(1–3), 125–136 (2005)CrossRefGoogle Scholar
  14. Chen, H., Gao, B., Li, H., Ma, L.Q.: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J. Contam. Hydrol. 126(1–2), 29–36 (2011)CrossRefGoogle Scholar
  15. Chen, X.X., Bai, B.: Experimental investigation and modeling of particulate transportation and deposition in vertical and horizontal flows. Hydrogeol. J. 23(2), 365–375 (2015). doi: 10.1007/s10040-014-1205-2 CrossRefGoogle Scholar
  16. Chrysikopoulos, C.V., Katzourakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51(6), 4668–4683 (2015)CrossRefGoogle Scholar
  17. Clark, L.A., Wynn, T.M.: Methods for determining streambank critical shear stress and soil erodibility: implications for erosion rate predictions. Trans. ASABE 50(1), 95–106 (2007)CrossRefGoogle Scholar
  18. Derjaguin, B., Landau, L.: Theory of the stability of strongly charged lyophobicsols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim. 14, 633–662 (1941)Google Scholar
  19. Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation: Measurement, Modeling, and Simulation. Butterworth-Heinemann, Oxford (1995)Google Scholar
  20. Foppen, J.W.A., Mporokoso, A., Schijven, J.F.: Determining straining of Escherichia coli from breakthrough curves. J. Contam. Hydrol. 76(3–4), 191–210 (2005)CrossRefGoogle Scholar
  21. Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32(22), 3562–3569 (1998)CrossRefGoogle Scholar
  22. Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media: application to deep bed filtration. Ind. Eng. Chem. 62, 8–35 (1970)CrossRefGoogle Scholar
  23. James, S.C., Chrysikopoulos, C.V.: Analytical solutions for monodisperse and polydisperse colloid transport in uniform fractures. Coll. Surf. A Physicochem. Eng. Asp. 226, 101–118 (2003)CrossRefGoogle Scholar
  24. James, S.C., Bilezikjian, T.K., Chrysikopoulos, C.V.: Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids. Stoch. Environ. Res. Risk Assess. 19(4), 266–279 (2005)CrossRefGoogle Scholar
  25. James, S.C., Chrysikopoulos, C.V.: Monodisperse and polydisperse colloid transport in water-saturated fractures with various orientations: gravity effects. Adv. Water Resour. 34, 1249–1255 (2011)CrossRefGoogle Scholar
  26. Johnson, W.P., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)CrossRefGoogle Scholar
  27. Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.-D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129 (1997)CrossRefGoogle Scholar
  28. Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)CrossRefGoogle Scholar
  29. Lee, J., Koplik, J.: Network model for deep bed filtration. Phys Fluids 13, 1076–1086 (2001)CrossRefGoogle Scholar
  30. Masséi, N., Lacroix, M., Wang, H.Q., Dupont, J.P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57(1–2), 21–39 (2002)CrossRefGoogle Scholar
  31. McCarthy, J.F., McKay, L.D.: Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J. 3, 326–337 (2004)Google Scholar
  32. McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22, 1901–1921 (1986)CrossRefGoogle Scholar
  33. Mesticou, Z., Kacem, M., Dubujet, P.: Coupling effects of flow velocity and ionic strength on the clogging of a saturated porous medium. Transp. Porous Media 112(1), 265–282 (2016)CrossRefGoogle Scholar
  34. Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Model study on the kinetics of oil field formation damage due to salt precipitation from injection. J. Pet. Sci. Eng. 43(3–4), 201–217 (2004)CrossRefGoogle Scholar
  35. Pfannkuch, H.O.: Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux. Revue Française de l’institut du Pétrole 18, 215–270 (1963)Google Scholar
  36. Porubcan, A., Xu, S.: Colloid straining within saturated heterogeneous porous media. Water Res. 45(4), 1796–1806 (2011)CrossRefGoogle Scholar
  37. Raychoudhury, T., Tufenkji, N., Ghoshal, S.: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res. 50, 80–89 (2014)CrossRefGoogle Scholar
  38. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Coll. Surf. A Physicochem. Eng. Asp. 107(95), 1–56 (1996)CrossRefGoogle Scholar
  39. Sadiq, R., Husain, T., Al-Zahrani, A.M., Sheikh, A.K., Farooq, S.: Secondary effluent treatment by slow sand filters: performance and risk analysis. Water Air Soil Pollut. 143, 41–63 (2003)CrossRefGoogle Scholar
  40. Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porousmedia at the pore scale. Coll. Surf. A: Physicochem. Eng. Asp. 427, 33–40 (2013)CrossRefGoogle Scholar
  41. Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Coll. Interface Sci. 119(2–3), 71–96 (2006)Google Scholar
  42. Sen, T.K., Mahajan, S.P., Khilar, K.C.: Colloid-Associated contaminant transport in porous media: 1 Experimental studies. AIChE J. 48(10), 2366–2374 (2002)CrossRefGoogle Scholar
  43. Sjödahl, P., Dahlin, T., Johansson, S., Loke, M.H.: Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. J. Appl. Geophys. 65(3–4), 155–164 (2008)CrossRefGoogle Scholar
  44. Syngouna, V.I., Chrysikopoulos, C.V.: Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity. J. Contam. Hydrol. 126, 301–314 (2011)CrossRefGoogle Scholar
  45. Syngouna, V.I., Chrysikopoulos, C.V.: Cotransport of clay colloids and viruses in water saturated porous media. Coll. Surf. A Physicochem. Eng. Asp. 416, 56–65 (2013)CrossRefGoogle Scholar
  46. Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol 40, 7725–7731 (2006)CrossRefGoogle Scholar
  47. Torkzaban, S., Kim, H.N., Simunek, J., Bradford, S.A.: Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environ. Sci. Technol. 44(5), 1662–1669 (2010)CrossRefGoogle Scholar
  48. Tosco, T., Sethi, R.: Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: A modeling approach. Environ. Sci. Technol. 44(23), 9062–9068 (2010)CrossRefGoogle Scholar
  49. Verwey, E.J.W., Overbeek, J.T.H.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)Google Scholar
  50. Walshe, G.E., Pang, L., Flury, M., Close, M.E., Flintoft, M.: Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res. 44(4), 1255–1269 (2010)CrossRefGoogle Scholar
  51. Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.-P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. C. R. Acad. Sci. Paris Earth Planet. Sci. 331, 97–104 (2000)Google Scholar
  52. Xu, S.P., Liao, Q., Saiers, J.E.: Straining of nonspherical colloids in saturated porous media. Environ. Sci. Technol. 42, 771–778 (2008)CrossRefGoogle Scholar
  53. Xu, S.P., Saiers, J.E.: Colloid straining within water-saturated porous media: effects of colloid size nonuniformity. Water Resour. Res. 45, W05501 (2009)CrossRefGoogle Scholar
  54. Xu, S., Gao, B., Saiers, J.E.: Straining of colloidal particles in saturated porous media. Water Resour. Res. 42(12), 1–10 (2006)CrossRefGoogle Scholar
  55. You, Z., Badalyan, A., Bedrikovetsky, P.: Size-exclusion colloidal transport in porous media: stochastic modeling and experimental study. Soc. Pet. Eng. 18(4), 620–633 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ahmed Hammadi
    • 1
  • Nasre-Dine Ahfir
    • 1
    Email author
  • Abdellah Alem
    • 1
  • HuaQing Wang
    • 1
  1. 1.UMR 6294 CNRS, LOMCNormandie Univ, UNIHAVRELe HavreFrance

Personalised recommendations