Transport in Porous Media

, Volume 118, Issue 1, pp 39–64 | Cite as

Heterogeneity Effects on Evaporation-Induced Halite and Gypsum Co-precipitation in Porous Media

  • E. MejriEmail author
  • R. Bouhlila
  • R. Helmig


Understanding evaporation from porous media in the presence of soluble salts plays a key role in describing many environmental processes. Several studies done in this field led to a wide acceptance that the prediction of soil salinization driven by evaporation from the unsaturated zone and mainly encountered in arid and semiarid regions is a challenging task because of the temporal and spatial variabilities of soil rocks combined with different interactions between the porous medium and the atmosphere. In this work, we present a reactive transport model developed with the aim of describing the processes of evaporation, salt accumulation and precipitation. We took the model presented in our previous paper (Jambhekar et al. in Transp Porous Media 114:341–369, 2016) as the basis and developed it with the required geochemical model to account for evaporative salt co-precipitation. The salts considered in this work are halite (NaCl) and gypsum (CaSO\(_{4}\cdot 2\mathrm{H}_{2}\)O). We focus particularly on the influence of spatial heterogeneities in the porous medium on the dynamics of the physical processes. In the numerical simulations performed in this work, we distinguished different heterogeneity configurations. The results show that the drying from heterogeneous porous media initially affects the coarser pores, where the salt crystals first appear.


Porous media Evaporation Geochemical model Salt co-precipitation Heterogeneity effects 



The authors are grateful to the German Academic Exchange Service (DAAD) for funding the research work subject of this paper.


  1. Appelo, C.A.J., Posma, D.: Geochemistry, Groundwater and Pollution, 2nd edn. Balkema, Leiden (2005)CrossRefGoogle Scholar
  2. Balan, B., Mohaghegh, S., Ameri, S.: State-of-the-art in permeability determination from well log data: part 1—a comparative study, model development. In: SPE, p. 30978 (1995)Google Scholar
  3. Battistelli, A., Calore, C., Pruess, K.: Analysis of salt effects on the depletion of fractured reservoir blocks, pp. 1613–1618. In World Geothermal Congress, Florence, Proceedings (1995)Google Scholar
  4. Batzle, M.L., Wang, Z.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992)CrossRefGoogle Scholar
  5. Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferré, T.P.A., Vereecken, H.: Near-surface solute redistribution during evaporation. Geophys. Res. Lett. 38, L17404 (2011). doi: 10.1029/2011GL048147 CrossRefGoogle Scholar
  6. Bernabé, Y., Mok, U., Evans, B.: Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl. Geophys. 160(5), 937–960 (2003)CrossRefGoogle Scholar
  7. Bonn, N.S., Desarnaud, J., Bertrand, F., Chateau, X., Bonn, D.: Damage in porous media due to salt crystallization. Phys. Rev. E 81, 066110 (2010)CrossRefGoogle Scholar
  8. Bouchelaghem, F.: A numerical and analytical study on calcite dissolution and gypsum precipitation. Appl. Math. Model. 34, 467–480 (2010)CrossRefGoogle Scholar
  9. Bouhlila, R.: Ecoulement, transport et réactions géochimiques couplés dans les milieux poreux. Thèse de doctorat détat en sciences de lUniversité Tunis II (ENIT), Cas des sels et des saumures (1999)Google Scholar
  10. Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Hydrology Papers. Colorado State University, Fort Collins (1964)Google Scholar
  11. Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. An efficient solution technique. Adv. Water Resour. 25(5), 533–550 (2002)CrossRefGoogle Scholar
  12. Colon, F., et al.: Experimental investigation of the effect of dissolution on sandstone permeability, porosity and reactive surface area. Geomech. Cosmochim. Acta 68, 805–817 (2004)CrossRefGoogle Scholar
  13. Derluyn, H., Moonen, P., Carmeliet, J.: Deformation and damage due to drying-induced salt crystallization in porous limestone. J. Mech. Phys. Solids 63, 242–255 (2014). doi: 10.1016/j.jmps.2013.09.005 CrossRefGoogle Scholar
  14. Desarnaud, J., Derluyn, H., Molari, L., de Miranda, S., Cnudde, V., Shahidzadeh, N.: Drying of salt contaminated porous media: effect of primary and secondary nucleation. J. Appl. Phys. 118, 114901 (2015). doi: 10.1063/1.4930292 CrossRefGoogle Scholar
  15. Eloukabi, H., Sghaier, N.: Ben Nasrallah, S., Prat, M.: Experimental study of the effect of sodium chloride on drying of porous media: the crusty-patchy efflorescence transition. Int. J. Heat Transf. 56, 80–93 (2013)CrossRefGoogle Scholar
  16. Espinosa-Marzal, R.M., Scherer, G.W.: Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 69, 2657–2669 (2013)CrossRefGoogle Scholar
  17. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: DUNE for multi-phase, component, scale, physics., flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011). doi: 10.1016/j.advwatres.2011.03.007
  18. Fujimaki, H., Shimano, T., Inoue, M., Nakane, K.: Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 5(4), 1246–1256 (2006)CrossRefGoogle Scholar
  19. Hachicha, M.: Les sols sals et leur mise en valeur en Tunisie. Revue Scheresse 18(1), 45–50 (2007)Google Scholar
  20. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurfaces: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)CrossRefGoogle Scholar
  21. Helmig, R., Huber, R.: Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Adv. Water Resour. 21, 697–711 (1998)CrossRefGoogle Scholar
  22. Helmig, R., Weiss, A., Wohlmuth, B.: Dynamic effects in heterogeneous porous media. Comput. Geosci. 11, 261–274 (2007)CrossRefGoogle Scholar
  23. Hidri, F.: Evaporation from a porous medium containing a dissolved salt. Influence of heterogeneities at Darcy’s scale on the distribution of ions at the evaporative surface. Ph.D. Thesis (2013)Google Scholar
  24. Jambhekar, V.A.: Numerical modeling and analysis of evaporative salinization in a coupled free-flow porous-media system. Ph.D. Thesis (2016)Google Scholar
  25. Jambhekar, V.A., Helmig, R., Schröder, N., Shokri, N.: Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt. Transp. Porous Media (2015). doi: 10.1007/s11242-015-0516-7 Google Scholar
  26. Jambhekar, V.A., Mejri, E., Schröder, N., Helmig, R., Shokri, N.: Kinetic approach to model reactive transport and mixed salt precipitation in a coupled free-flow-porous-media system. Transp. Porous Media 114, 341–369 (2016)CrossRefGoogle Scholar
  27. Koniorczyk, M.: Salt precipitation and crystallization in non-isothermal, partially saturated porous materials considering ions interaction model. Int. J. Heat Mass Transf. 55, 665–679 (2012)CrossRefGoogle Scholar
  28. Lai, K.H., Chen, J.S., Liu, C.W., Yang, S.Y.: Effect of permeability-porosity functions on simulated morphological evolution of a chemical dissolution front. Hydrol. Process. (2012). doi: 10.1002/hyp.9492 Google Scholar
  29. Laabidi, E., Bouhlila, R.: Impact of mixing induced calcite precipitation on the flow and transport. Carbonates Evaporites (2016). doi: 10.1007/s13146-016-0305-6 Google Scholar
  30. Le, D., Hoang, H., Mahadevan, J.: Impact of capillary-driven liquid films on salt crystallization. Transp. Porous Media 80, 229–252 (2009)CrossRefGoogle Scholar
  31. Lehmann, P., Assouline, S., Or, D.: Characteristic lenghts affecting evaporative drying of porous media. Phys. Rev. E 77, 056309 (2008)CrossRefGoogle Scholar
  32. Lehmann, P., Or, D.: Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E 80, 046318 (2009)CrossRefGoogle Scholar
  33. Madé, B., Clément, A., Britz, B.: Modelling mineral/solution interactions: the thermodynamic and kinetic code KINDISP. Comput. Geosci. 20(9), 1347–1363 (1994)CrossRefGoogle Scholar
  34. Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, W10522 (2011). doi: 10.1029/2011WR010685 CrossRefGoogle Scholar
  35. Nachshon, U., Shahraeeni, E., Or, D., Dragila, M., Weisbrod, N.: Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. 47, W12519 (2011a). doi: 10.1029/2011WR010776 Google Scholar
  36. Nachshon, U., Weisbrod, N., Dragila, M.I., Grader, A.: Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 47, W03513 (2011b). doi: 10.1029/2010WR009677 Google Scholar
  37. Nassar, I.N., Horton, R.: Salinity and compaction effects on soil water evaporation and water and solute distribution. Soil Sci. Soc. Am. J. 63, 752 (1999)CrossRefGoogle Scholar
  38. Nicolai, A., Grunewald, J., Zhang, J.S.: Salztransport und Phasenumwandlung-Modellierung und numerische Lsung im Simulationsprogramm Delphin 5. Bauphysik 29(3), 231–239 (2007). doi: 10.1002/bapi.200710032 CrossRefGoogle Scholar
  39. Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64, 1447–1460 (1997)CrossRefGoogle Scholar
  40. Peyson, Y., Bazin, B., Magnier, C., Kohler, E., Youssef, S.: Permeability alteration due to salt precipitation driven by drying in the context of \(CO_2\) injection. Energy Procedia 4, 4387–4394 (2011)CrossRefGoogle Scholar
  41. Pina Jasson, E., Donado, L.D., Bustos, M.C.: Multi-component reactive transport modelling in a 1D column. In: XIX International Conference on Water Resources CMWR (2012)Google Scholar
  42. Sghaier, N., Prat, M.: Effect of efflorescence formation on drying kinetics of porous media. Transp. Porous Media 80, 441–454 (2009). doi: 10.1007/S11242-009-9373-6 CrossRefGoogle Scholar
  43. Shimojima, F., Yoshioka, R., Tamagawa, I.: Salinization owing to evaporation from bare soil surfaces and its influences on the evaporation. J. Hydrol. 176, 109–136 (1996)CrossRefGoogle Scholar
  44. Shokri, N., Lehman, P., Or, D.: Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: pore scale processes near vaporization surface. Phys. Rev. E 81(4, Part2), 046308 (2010)Google Scholar
  45. Tsypkin, G., Woods, A.W.: Precipitate formation in a porous rock through evaporation of saline water. J. Fluid Mech. 537, 35–53 (2005)CrossRefGoogle Scholar
  46. Van Dam, J.C., Feddes, R.A.: Numerical simulations of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 233, 72–85 (2000)CrossRefGoogle Scholar
  47. Veran-Tissoires, S., Marcoux, M., Prat, M.: Salt crystallization at the surface of a heterogeneous porous medium. Letters 98, 34005 (2012)Google Scholar
  48. Veran-Tissoires, S., Prat, M.: Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation. J. Fluid Mech. 749, 701–749 (2014)CrossRefGoogle Scholar
  49. Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at Tiwi. Philippines. Geothermics 33(4), 447–491 (2004). doi: 10.1016/j.geothermics Google Scholar
  50. Zeidouni, M., Darvish, M.P., Keith, D.: Analytical solution to evaluate salt precipitation during \(CO_2\) injection in saline aquifers. Int. J. Greenh. Gas Control 3(5), 600–611 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratoire de Modélisation en Hydraulique et Environnement, National Engineering School of Tunis (ENIT)University of Tunis El Manar (UTM)Le Belvédère, TunisTunisia
  2. 2.Department of Hydromechanics and Modelling of HydrosystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations