Transport in Porous Media

, Volume 118, Issue 1, pp 17–38 | Cite as

Use of Column and Filter Paper Methods to Obtain Chloride Transportation Parameters on Mortar Samples

  • José Marcílio Ladeia Vilasbôas
  • Sandro Lemos MachadoEmail author


Many of the causes of the occurrence of pathologies in reinforced concrete structures are linked to the transport of different substances through the pores and fissures of the mortar cover layer and the concrete itself. This transport is influenced by environmental factors and the properties of the porous media. This paper deals with the application of geotechnical techniques to obtain chloride transportation parameters in mortar samples. The filter paper technique was used in order to obtain the water retention curves, and column tests were performed to obtain parameters such as retard (attenuation) factor, diffusion and mechanical dispersion coefficients and permeability. These techniques proved to be useful for determining the parameters needed for modeling the transport of chloride through the concrete cover layer. Furthermore, these techniques enable the different phenomena involved (matric suction, attenuation and hydrodynamic dispersion) to be treated separately, which is useful for modeling purposes.


Permeability Chloride transportation Durability Life span Mortar 

Supplementary material

11242_2017_845_MOESM1_ESM.ods (551 kb)
Supplementary material 1 (ods 550 KB)
11242_2017_845_MOESM2_ESM.ods (27 kb)
Supplementary material 2 (ods 26 KB)
11242_2017_845_MOESM3_ESM.ods (17 kb)
Supplementary material 3 (ods 17 KB)
11242_2017_845_MOESM4_ESM.ods (786 kb)
Supplementary material 4 (ods 786 KB)


  1. AASHTO-T277.: Standard method of test for rapid determination of the chloride permeability of concrete. Tech. Rep. (2015)Google Scholar
  2. Andrade, C., Whiting, D.: A comparison of chloride ion diffusion coefficients derived from concentration gradients and non-steady state accelerated ionic migration. Mater. Struct. 29(8), 476–484 (1996)CrossRefGoogle Scholar
  3. ASTM-C-1202: Electrical indication of concrete’s ability to resist chloride ion penetration. Tech. Rep. (1997)Google Scholar
  4. ASTM-C-1543-02.: Standard test method for determining the penetration of chloride ion into concrete by ponding. Tech. Rep. (2002)Google Scholar
  5. ASTM-C-1556.: Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. Annual Book of ASTM Standards, vol. 4.02. Tech. Rep. (2007)Google Scholar
  6. ASTM-C-5298: Standard test method for measurement of soil potential (suction) using filter paper. Annual Book of ASTM Standards, vol. 4.08 (1994)Google Scholar
  7. Daniel, D.E.: Geotechnical Practice for Waste Disposal. Springer, Berlin (1993)CrossRefGoogle Scholar
  8. de Freitas, V.P., Torres, M.I., Guimarães, A.S.: Humidade Ascencional. FEUP edições (2008)Google Scholar
  9. Fredlund, D.G., Xing, A.: Equations for the soil-water characteristic curve. Can. Geotech. J. 31(4), 521–532 (1994)CrossRefGoogle Scholar
  10. Fredlund, D.G., Rahardjo, H., Fredlund, M.D.: Unsaturated soil mechanics in engineering practice, p 926 (2012)Google Scholar
  11. Horowitz, A.J.: A primer on sediment-trace element chemistry. Tech. Rep., US Geological Survey, Books and Open-File Reports Section [distributor] (1991)Google Scholar
  12. Machado, S.L., Presa, E.P.: Tendências Atuais da Mecânica dos Solos Não Saturados no Brasil - Ecos do NSAT2007”. In: COBRAMSEG 2008, pp. 231–250 (2008)Google Scholar
  13. Marinho, F., Oliveira, O.: The filter paper method revisited. Geotech. Test. J. 29(3), 250–258 (2006)Google Scholar
  14. Marinho, F.A.M., Take, A., Tarantino, A.: Tensiometeric and axis translation techniques for suction measurement. Geotech. Geol. Eng. 26(6), 615–631 (2008)CrossRefGoogle Scholar
  15. McGrath, P.F., Hooton, R.D.: Re-evaluation of the AASHTO T259 90-day salt ponding test. Cem. Concr. Res. 29(8), 1239–1248 (1999)CrossRefGoogle Scholar
  16. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRefGoogle Scholar
  17. NT_BUILD_492: Cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. Tech. Rep. (1999)Google Scholar
  18. Ogata, A.: Theory of dispersion in a granular medium. Tech. Rep. (1970)Google Scholar
  19. Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. Tech. Rep. (1961)Google Scholar
  20. Presa, E.P.: Deformabilidad de las arcillas expansivas bajo succión controlada. Ph.D. thesis, Universidad Politécnica de Madrid (1982)Google Scholar
  21. Ribeiro, D.V., Abrantes, J.C.C.: Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr. Build. Mater. 111, 98–104 (2016)CrossRefGoogle Scholar
  22. Ribeiro, D.V., Labrincha, J.A., Morelli, M.R.: Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cem. Concr. Res. 42(1), 124–133 (2012)CrossRefGoogle Scholar
  23. Shackelford, C.D.: Cumulative mass approach for column testing. J. Geotech. Eng. 121(10), 696–703 (1995)CrossRefGoogle Scholar
  24. Shackelford, C.D., Jefferis, S.A.: Geoenvironmental engineering for in situ remediation. In: GeoEng2000—An International Conference on Geotechnical and Geological Engineering, vol. 1 (2000)Google Scholar
  25. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  26. van Genuchten, M.T., Alves, W.J.: Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Tech. Rep. (1982)Google Scholar
  27. Van Genuchten, M.T., Parker, J.C.: Boundary conditions for displacement experiments through short laboratory soil columns. Soil Sci. Soc. Am. J. 48(4), 703–708 (1984)CrossRefGoogle Scholar
  28. Vilasboas, J.M., Machado, S.L., Pinto, S.A.: Utilização do método do papel-filtro para determinação de curvas de retenção de água em argamassas e concretos. RIEM IBRACON Struct. Mater. J. 9(4), 525–543 (2016)CrossRefGoogle Scholar
  29. Visudmedanukul, P.: Solute transport through cement-bentonite barriers. Ph.D. thesis, Kyoto University (2004)Google Scholar
  30. Yang, C.C., Wang, L.C.: The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test. Mater. Chem. Phys. 85(2), 266–272 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • José Marcílio Ladeia Vilasbôas
    • 1
  • Sandro Lemos Machado
    • 2
    Email author
  1. 1.Engineering SchoolCatholic University of SalvadorSalvadorBrazil
  2. 2.Department of Materials Science and TechnologyFederal University of BahiaSalvadorBrazil

Personalised recommendations