Advertisement

Transport in Porous Media

, Volume 118, Issue 1, pp 1–16 | Cite as

Electrical Conductivity of Partially Saturated Packings of Particles

  • Behzad GhanbarianEmail author
  • Muhammad Sahimi
Article

Abstract

We address the problem of predicting saturation-dependent electrical conductivity \(\sigma \) in packings of particles during drainage and imbibition. The effective-medium approximation (EMA) and the universal power law of percolation for \(\sigma \) are used, respectively, at higher and low water saturations to predict the conductivity, with the crossover between the two occurring at some intermediate saturation \(S_{\mathrm{wx}}\). The main input to the theory is a single parameter that we estimate using the capillary pressure data. The predictions are compared with experimental, as well as numerical data for three distinct types of packings. The results for drainage in all the packings indicate that the universal power law of percolation is valid over the entire range of \(S_{\mathrm{w}}\). For imbibition, however, the universal power law may cross over to the EMA at \(S_{\mathrm{wx}} = 0.5\). We also find that the effect of the pore-size distribution on the \(\sigma {-}S_{\mathrm{w}}\) relation is minimal during both drainage and imbibition.

Keywords

Drainage Imbibition Packings of particles Electrical conductivity Partially saturated 

Notes

Acknowledgements

B. G. is grateful to Chloe Mawer, Silicon Valley Data Science, for providing the results of numerical simulation of drainage and imbibition used in this study, and to Hugh Daigle, the University of Texas at Austin, for his comments on the very first draft of this paper. Publication was authorized by the Director, Bureau of Economic Geology.

References

  1. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146, 54 (1942)CrossRefGoogle Scholar
  2. Aste, T., Saadatfar, M., Senden, T.J.: Local and global relations between the number of contacts and density in monodisperse sphere packs. J. Stat. Mech., Paper P07010 (2006)Google Scholar
  3. Bekri, S., Howard, J., Muller, J., Adler, P.M.: Electrical resistivity index in multiphase flow through porous media. Transp. Porous Media 51, 41–65 (2003)CrossRefGoogle Scholar
  4. Bernabé, Y., Bruderer, C.: Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophy. Res.: Solid. Earth 103, 513 (1998)Google Scholar
  5. Bhattad, P., Willson, C.S., Thompson, K.E.: Effect of network structure on characterization and flow modeling using X-ray micro-tomography images of granular and fibrous porous media. Transp. Porous Media 90, 363 (2011)CrossRefGoogle Scholar
  6. Bourget, S.J., Elrick, D.E., Tanner, C.B.: Electrical resistance units for moisture measurements: their moisture hysteresis, uniformity, and sensitivity. Soil Sci. 86, 298 (1958)CrossRefGoogle Scholar
  7. Brooks, R. H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Paper 3, Department of Civil Engineering, Colorado State Univiversity, Fort Collins (1964)Google Scholar
  8. Bryant, S., Pallatt, N.: Predicting formation factor and resistivity index in simple sandstones. J. Pet. Sci. Eng. 15, 169 (1996)CrossRefGoogle Scholar
  9. Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media 11, 53 (1993)CrossRefGoogle Scholar
  10. Dadvar, M., Sahimi, M.: Pore network model of deactivation of immobilized glucose isomerase in packed-bed reactors. III: multiscale modeling. Chem. Eng. Sci. 58, 4935 (2003)CrossRefGoogle Scholar
  11. Dashtian, H., Yang, Y., Sahimi, M.: Non-universality of the Archie exponent due to multifractality of the resistivity well logs. Geophys. Res. Lett. 42, 1065 (2015)CrossRefGoogle Scholar
  12. Doussan, C., Ruy, S.: Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resour. Res. 45, W10408 (2009)CrossRefGoogle Scholar
  13. Eckberg, D.K., Sunada, D.K.: Nonsteady three-phase immiscible fluid distribution in porous media. Water Resour. Res. 20, 1891 (1984)CrossRefGoogle Scholar
  14. Ewing, R.P., Hunt, A.G.: Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J. 5, 731 (2006)CrossRefGoogle Scholar
  15. Feng, S., Halperin, B.I., Sen, P.N.: Transport properties of continuum systems near the percolation threshold. Phys. Rev. B 35, 197 (1985)CrossRefGoogle Scholar
  16. Finney, J.L.: Random packing and the structure of simple liquids. I. Geometry of random close packing. Proc. R. Soc. Lond. A 319, 479 (1970)CrossRefGoogle Scholar
  17. Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46, 45 (2005)CrossRefGoogle Scholar
  18. Garboczi, E.J.: Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials, Building and Fire Research Laboratory. National Institute of Standards and Technology, Springfield (1998)Google Scholar
  19. Gerhard, J.I., Pang, T., Kueper, B.H.: Time scales of DNAPL migration in sandy aquifers examined via numerical simulation. Ground Water 45, 147 (2007)CrossRefGoogle Scholar
  20. Ghanbarian, B., Hunt, A.G.: Universal scaling of gas diffusion in porous media. Water Resour. Res. 50, 2242 (2014)CrossRefGoogle Scholar
  21. Ghanbarian-Alavijeh, B., Hunt, A.G.: Comments on “More general capillary pressure and relative permeability models from fractal geometry” by Kewen Li. J. Contam. Hydrol. 140, 21 (2012)CrossRefGoogle Scholar
  22. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Skinner, T.E.: Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophys. Res. Lett. 41, 3884 (2014)CrossRefGoogle Scholar
  23. Ghanbarian, B., Hunt, A.G., Skinner, T.E., Ewing, R.P.: Saturation dependence of transport in porous media predicted by percolation and effective medium theories. Fractals 23, 1540004 (2015a)CrossRefGoogle Scholar
  24. Ghanbarian, B., Daigle, H., Hunt, A.G., Ewing, R.P., Sahimi, M.: Gas and solute diffusion in partially saturated porous media: percolation theory and effective medium approximation compared with lattice Boltzmann simulations. J. Geophys. Res.: Solid. Earth 120, 182 (2015b)Google Scholar
  25. Halperin, B.I., Feng, S., Sen, P.N.: Differences between lattice and continuum percolation transport exponents. Phys. Rev. Lett. 54, 2391 (1985)CrossRefGoogle Scholar
  26. Heiba, A.A., Sahimi, M., Scriven, L.E., Davis, H.T.: Percolation theory of two-phase relative permeability. SPE Reserv. Eng. 7, 123 (1992)CrossRefGoogle Scholar
  27. Hunt, A.G., Ewing, R.P., Ghanbarian, B.: Percolation Theory for Flow in Porous Media, 3rd edn. Springer, Berlin (2014a)CrossRefGoogle Scholar
  28. Hunt, A.G., Ghanbarian, B., Ewing, R.P.: Saturation dependence of solute diffusion in porous media: universal scaling compared with experiments. Vadose Zone J. (2014b). doi: 10.2136/vzj2013.12.0204 Google Scholar
  29. Ioannidis, M.A., Chatzis, I., Lemaire, C., Perunarkilli, R.: Unsaturated hydraulic conductivity from nuclear magnetic resonance measurements. Water Resour. Res. 42, W07201 (2006)CrossRefGoogle Scholar
  30. Jiang, L., Liu, Y., Teng, Y., Zhao, J., Zhang, Y., Yang, M., Song, Y.: Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries. Heat Mass Transf. (2016). doi: 10.1007/s00231-016-1795-4 Google Scholar
  31. Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57, 2564 (1986)CrossRefGoogle Scholar
  32. Katz, A.J., Thompson, A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325 (1985)CrossRefGoogle Scholar
  33. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179 (1986)CrossRefGoogle Scholar
  34. Katz, A.J., Thompson, A.H.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. Solid Earth 92, 599 (1987)CrossRefGoogle Scholar
  35. Kiefer, T., Villanueva, G., Brugger, J.: Conduction in rectangular quasi-one-dimensional and two-dimensional random resistor networks away from the percolation threshold. Phys. Rev. E 80, 021104 (2009)CrossRefGoogle Scholar
  36. Knackstedt, M.A., Arns, C.H., Sheppard, A.P., Senden, T.J., Sok, R.M., Cinar, Y., Olafuyi, A.O., Pinczewski, W.V., Padhy, G., Ioannidis, M.: Pore scale analysis of electrical resistivity in complex core material. In: International Symposium of the Society of Core Analysis, Calgary Canada, Sep 10–12 (2007)Google Scholar
  37. Knackstedt, M.A., Sahimi, M., Sheppard, A.P.: Invasion percolation with long-range correlation: first-order phase transition and nonuniversal scaling properties. Phys. Rev. E 61, 4920 (2000)CrossRefGoogle Scholar
  38. Knight, R.: Hysteresis in the electrical resistivity of partially saturated sandstones. Geophysics 56, 2139 (1991)CrossRefGoogle Scholar
  39. Kogut, P.M., Straley, J.P.: Distribution-induced non-universality of the percolation conductivity exponents. J. Phys. C 12, 2151 (1979)CrossRefGoogle Scholar
  40. Li, M., Tang, Y.B., Bernabé, Y., Zhao, J.Z., Li, X.F., Bai, X.Y., Zhang, L.H.: Pore connectivity, electrical conductivity, and partial water saturation: network simulations. J. Geophys. Res. Solid Earth 120, 4055 (2015)CrossRefGoogle Scholar
  41. Longeron, D.G., Argaud, M.J., Feraud, J.P.: Effect of overburden pressure and the nature and microscopic distribution of fluids on electrical properties of rock samples. SPE Form. Eval. 4, 194 (1989)CrossRefGoogle Scholar
  42. Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160 (2000)CrossRefGoogle Scholar
  43. Man, H.N., Jing, X.D.: Pore network modelling of electrical resistivity and capillary pressure characteristics. Transp. Porous Media. 41, 263 (2000)CrossRefGoogle Scholar
  44. Mandelbrot, B.B.: Negative fractal dimensions and multifractals. Phys. A 163, 306 (1990)CrossRefGoogle Scholar
  45. Mawer, C., Knight, R., Kitanidis, P.K.: Relating relative hydraulic and electrical conductivity in the unsaturated zone. Water Resour. Res. 51, 599 (2015)CrossRefGoogle Scholar
  46. Montaron, B.: Connectivity theory—a new approach to modeling non-Archie rocks. Petrophysics 50, 102 (2009)Google Scholar
  47. Morrow, N.R.: Irreducible wetting-phase saturations in porous media. Chem. Eng. Sci. 25, 1799–1815 (1970)CrossRefGoogle Scholar
  48. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513 (1976)CrossRefGoogle Scholar
  49. Mualem, Y., Friedman, S.P.: Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resour. Res. 27, 2771 (1991)CrossRefGoogle Scholar
  50. Niu, Q., Fratta, D., Wang, Y.H.: The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils. J. Hydrol. 522, 475 (2015)CrossRefGoogle Scholar
  51. Ojeda, G., Perfect, E., Alcañiz, J.M., Ortiz, O.: Fractal analysis of soil water hysteresis as influenced by sewage sludge application. Geoderma 134, 386 (2006)CrossRefGoogle Scholar
  52. Perrier, E., Rieu, M., Sposito, G., de Marsily, G.: Models of the water retention curve for soils with a fractal pore size distribution. Water Resour. Res. 32, 3025 (1996)CrossRefGoogle Scholar
  53. Revil, A.: Transport of water and ions in partially water-saturated porous media, part 1. Constitutive equations. Adv. Water Resour. (2016). doi: 10.1016/j.advwatres.2016.02.006
  54. Revil, A., Cathles, L.M.: Permeability of shaly sands. Water Resour. Res. 35, 651 (1999)CrossRefGoogle Scholar
  55. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties: I. Theory, II. Applications. Soil Sci. Soc. Am. J. 55, 1231 (1991)CrossRefGoogle Scholar
  56. Roberts, J.N., Schwartz, L.M.: Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31, 5990 (1985)CrossRefGoogle Scholar
  57. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)CrossRefGoogle Scholar
  58. Sahimi, M.: Dispersion in porous media, continuous-time random walks, and percolation. Phys. Rev. E 85, 16316 (2012)CrossRefGoogle Scholar
  59. Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: Stochastic transport in disordered systems. J. Chem. Phys. 78, 6849 (1983a)CrossRefGoogle Scholar
  60. Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: Real-space renormalization and effective-medium approximation to the percolation conduction problem. Phys. Rev. B 28, 307 (1983b)CrossRefGoogle Scholar
  61. Schwartz, L.M., Kimminau, S.: Analysis of electrical conduction in the grain consolidation model. Geophysics 52, 1402 (1987)CrossRefGoogle Scholar
  62. Sharma, M.M., Garrouch, A., Dunlap, H.F.: Effects of wettability, pore geometry, and stress on electrical conduction in fluid-saturated rocks. Log Anal. 32, 511–526 (1991)Google Scholar
  63. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis, London (1994)Google Scholar
  64. Straley, J.P.: Non-universal threshold behaviour of random resistor networks with anomalous distribution of conductances. J. Phys. C 15, 2343 (1982)CrossRefGoogle Scholar
  65. Suman, R.J., Knight, R.J.: Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks—a network study. Geophysics 62, 1151 (1997)CrossRefGoogle Scholar
  66. Swanson, B.F.: Rationalizing the influence of crude wetting on reservoir fluid flow with electrical resistivity behavior. J. Petrol. Technol. 32, 1459–1464 (1980)CrossRefGoogle Scholar
  67. Toumelin, E., Torres-Verdín, C.: Object-oriented approach for the pore-scale simulation of DC electrical conductivity of two-phase saturated porous media. Geophysics 73, E67–E79 (2008)CrossRefGoogle Scholar
  68. Tsakiroglou, C.D., Fleury, M.: Resistivity index of fractional wettability porous media. J. Pet. Sci. Eng. 22, 253 (1999a)CrossRefGoogle Scholar
  69. Tsakiroglou, C.D., Fleury, M.: Pore network analysis of resistivity index for water-wet porous media. Transp. Porous Media 35, 89 (1999b)CrossRefGoogle Scholar
  70. Tyler, S.W., Wheatcraft, S.W.: Fractal processes in soil water retention. Water Resour. Res. 26, 1047 (1990)CrossRefGoogle Scholar
  71. Vaez Allaei, S.M., Sahimi, M.: Computing transport properties of heterogeneous media by an optimization method. Int. J. Mod. Phys. C 16, 1 (2005)CrossRefGoogle Scholar
  72. Valfouskaya, A., Adler, P.M.: Nuclear-magnetic-resonance diffusion simulations in two phases in porous media. Phys. Rev. E 72, 056317 (2005)CrossRefGoogle Scholar
  73. Wang, K.W., Sun, J.M., Guan, J.T., Zhu, D.W.: A percolation study of electrical properties of reservoir rocks. Phys. A 380, 19 (2007)CrossRefGoogle Scholar
  74. Zhan, X., Schwartz, L.M., Toksöz, M.N., Smith, W.C., Morgan, F.D.: Pore-scale modeling of electrical and fluid transport in Berea sandstone. Geophysics 75, F135 (2010)CrossRefGoogle Scholar
  75. Zhou, D., Arbabi, S., Stenby, E.H.: A percolation study of wettability effect on the electrical properties of reservoir rocks. Transp. Porous Media 29, 85 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Bureau of Economic Geology, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  2. 2.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations