Smoldering Combustion in Oil Shales: Influence of Calcination and Pyrolytic Reactions

Abstract

A three-dimensional numerical tool for the microscale simulation of smoldering in fixed beds of solid fuels is presented. The description is based on the local equations and accounts the local couplings of the transport and reaction mechanisms. The chemical model includes devolatilization and cracking of the kerogen, calcination of the carbonates contained in a mineral matrix and oxidation of the carbon char left by the pyrolysis. An extensive survey of the functioning regimes exhibits features that have to be taken into account in the operation of a reactor and in its macroscopic modeling. Three dimensionless numbers are shown to control the phenomenology, which embody the effects of the constituent properties and of the operating conditions. One of them, \(\mathrm{Pe}_\mathrm{F,s}\), provides an a priori criterion for the validity of a local equilibrium hypothesis and for the applicability of standard homogenized formulations. The numerical observations comply when \(\mathrm{Pe}_\mathrm{F,s}\) is small with the expectations from a simple homogenized description, including quantitative predictions of the mean temperature profile, of the consumption of the various reactants and of the relative positions of the reaction fronts. Conversely, local equilibrium is not satisfied when \(\mathrm{Pe}_\mathrm{F,s}\) is large and these approaches fail in several respects. The simple upscaled transport equations are unable to predict the evolution of some of the locally average state variable. Furthermore, strong local deviations of the state variables from their local averages, combined with the nonlinearity of the kinetic laws, cause the overall reaction rates to differ from those deduced from the mean values. Nevertheless, a successful heuristic model for the spread of the hot and potentially reactive region can be stated, which provides an avenue for further studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adler, P.M., Thovert, J.-F.: Real porous media: local geometry and macroscopic properties. Appl. Mech. Rev. 51, 537–585 (1998)

    Article  Google Scholar 

  2. Akkutlu, I.Y., Yortos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 104, 229–247 (2003)

    Article  Google Scholar 

  3. Akkutlu, I.Y., Yortos, Y.C.: The effect of heterogeneity on in-situ combustion: propagation of combustion fronts in layered porous media. SPE J. 10, 394–404 (2005)

    Article  Google Scholar 

  4. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 68–77 (1956)

    Article  Google Scholar 

  5. Békri, S., Thovert, J.-F., Adler, P.M.M.: Dissolution of porous media. Chem. Eng. Sci. 50, 2765–2791 (1995)

    Article  Google Scholar 

  6. Coelho, D., Thovert, J.-F., Adler, P.M.: Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55, 1959–1978 (1997)

    Article  Google Scholar 

  7. Debenest, G.: Simulation numérique tridimensionnelle, à la microćhelle, de la combustion en lit fixe de schistes bitumineux. Université de Poitiers, Ph.D. diss. (2003)

  8. Debenest, G., Mourzenko, V.V., Thovert, J.-F.: Smoldering in fixed beds of oil shale grains. A three-dimensional microscale numerical model. Combust. Theory Model. 9, 113–135 (2005)

    Article  Google Scholar 

  9. Debenest, G., Mourzenko, V.V., Thovert, J.-F.: Smoldering in fixed beds of oil shale grains. Governing parameters and global regimes. Combust. Theory Model. 9, 301–321 (2005)

    Article  Google Scholar 

  10. Debenest, G., Mourzenko, V.V., Thovert, J.-F.: Three-dimensional microscale numerical simulation of smoldering process in heterogeneous porous media. Combust. Sci. Technol. 180, 2170–2185 (2008)

    Article  Google Scholar 

  11. Elayeb, M.E., Debenest, G.R., Mourzenko, V.V., Thovert, J.-F.: 3D microscale simulation of smoldering. In: Proceedings of the Sixth Mediterranean Combustion Symposium, Ajaccio, Corsica, France (2009)

  12. Elayeb, M.: Modélisation à l’échelle microscopique de transports avec réaction en milieu poreux: Combustion en lit fixe. Université de Poitiers, Poitiers, Ph.D. diss. (2008)

  13. Lemaître, R., Adler, P.M.: Transport in fractals. IV-Three dimensional Stokes flow through random media and regular fractals. Transp. Porous Med. 5, 325–340 (1990)

    Article  Google Scholar 

  14. Martins, M.F.: Structure dun front de combustion propagé en co-courant dans un lit fixe de schiste bitumineux broyé. ENSTIMAC, Albi , Ph.D. diss. (2008)

  15. Martins, M.F., Salvador, S., Commandré, J.M., Lapene, A., Debenest, G., Thovert, J.-F.: 3D Thermochemical Characterization of a Combustion Front Propagation in Reactive Porous Medium: A New Experimental Device, Eurotherm Seminar No. 81. Ecole des Mines d’Albi, France (2007)

    Google Scholar 

  16. Martins, M.F., Salvador, S., Thovert, J.-F., Debenest, G.: Co-current combustion of oil shale—part 1: characterization of the solid and gaseous products. Fuel 89, 133–143 (2010)

    Article  Google Scholar 

  17. Martins, M.F., Salvador, S., Thovert, J.-F., Debenest, G.: Co-current combustion of oil shale—part 2: structure of the combustion front. Fuel 89, 144–151 (2010)

    Article  Google Scholar 

  18. Moallemi, M.K., Zhang, H., Kumer, S.: Numerical modeling of two-dimensional smoldering processes. Combust. Flame 95, 170–182 (1993)

    Article  Google Scholar 

  19. Ohlemiller, T.J.: Smoldering combustion, section 2. Chapter 9 In: DiNenno, P.J., Drysdale, D., Beyler, C.L., Walton, W.D. (eds.) SFPE Handbook of Fire Protection Engineering. 3rd edn, vol. 2, pp. 200–210 (2002)

  20. Ohlemiller, T.J.: Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 11, 277–310 (1985)

    Article  Google Scholar 

  21. Oliveira, A.A.M., Kaviany, M.: Nonequilibrium in the transport of heat and reactants in combustion in porous media. Prog. Energy Combust. Sci. 27, 523–545 (2001)

    Article  Google Scholar 

  22. Porta, G.M., Thovert, J.-F., Riva, M., Guadagnini, A., Adler, P.M.: Microscale simulation and numerical upscaling of a reactive flow in a plane channel. Phys. Rev. E 86, 036102 (2012)

    Article  Google Scholar 

  23. Porta, G.M., Chaynikov, S., Thovert, J.-F., Riva, M., Guadagnini, A., Adler, P.M.: Numerical investigation of pore and continuum scale formulations of bimolecular reactive transport in porous media. Adv. Water Resour. 62, 243–253 (2013)

    Article  Google Scholar 

  24. Rein, G.: Smouldering combustion phenomena in science and technology. Int. Rev. Chem. Eng. 1, 3–18 (2009)

    Google Scholar 

  25. Roudani, C.: Modélisation à l’échelle microscopique des transferts thermiques radiatifs en milieu poreux. Université de Poitiers, Poitiers, Ph.D. diss. (2008)

  26. Sallés, J., Thovert, J.-F., Adler, P.M.: Deposition in porous media and clogging. Chem. Eng. Sci. 48, 2839–2858 (1993)

    Article  Google Scholar 

  27. Sallés, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.L., Adler, P.M.: Taylor dispersion in porous media. Determination of the dispersion tensor. Phys. Fluids A 5, 2348–2376 (1993)

    Article  Google Scholar 

  28. Schult, D.A., Matkowsky, B.J., Volpert, V.A., Fernandez-Pello, A.C.: Propagation and extinction of forced opposed flow smolder waves. Combust. Flame 101, 471–490 (1995)

    Article  Google Scholar 

  29. Sennoune, M., Salvador, S., Quintard, M.: Reducing \(\text{ CO }_{2}\) emissions from oil shale semicoke smoldering combustion by varying the carbonate and fixed carbon contents. Combust. Flame 158, 2272–2282 (2011)

    Article  Google Scholar 

  30. Shapiro, M., Brenner, H.: Dispersion of a chemically reactive solute in a spatially periodeic model of a porous medium. Chem. Eng. Sci. 43, 551–571 (1988)

    Article  Google Scholar 

  31. Tartakovsky, A.M., Tartakovsky, G.D., Scheibe, T.D.: Effects of incomplete mixing on multicomponent reactive transport. Adv. Water Resour. 32, 1674–1679 (2009)

    Article  Google Scholar 

  32. Thovert, J.-F., Wary, F., Adler, P.M.: Thermal conductivity of random media and regular fractals. J. Appl. Phys. 68, 3872–3883 (1990)

    Article  Google Scholar 

  33. Turns, S.R.: An Introduction to Combustion; Concepts and Applications. McGraw-Hill, New York (1996)

    Google Scholar 

  34. World Energy Council: Survey of Energy Resources, ISBN: 0-946121-26-5. World Energy Council, London (2007)

Download references

Acknowledgements

This work was supported by the French Research Agency (ANR) through the INSICOMB Project (ANR-11-BS09-0005) and by the Erasmus Mundus Al Idrisi II project financed by the Erasmus Mundus Programme of the European Union. It also pertains to the French Government Programme Investissements d’Avenir (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-François Thovert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elayeb, M., Debenest, G., Mourzenko, V.V. et al. Smoldering Combustion in Oil Shales: Influence of Calcination and Pyrolytic Reactions. Transp Porous Med 116, 889–921 (2017). https://doi.org/10.1007/s11242-016-0805-9

Download citation

Keywords

  • Smoldering
  • Oil shale
  • Combustion
  • Pyrolysis
  • Calcination
  • Microscale simulations