Advertisement

Transport in Porous Media

, Volume 116, Issue 2, pp 797–823 | Cite as

Direct Hydraulic Parameter and Function Estimation for Diverse Soil Types Under Infiltration and Evaporation

  • Jianying JiaoEmail author
  • Ye Zhang
  • Jianting Zhu
Article
  • 150 Downloads

Abstract

A new computationally efficient direct method is applied to estimating unsaturated hydraulic properties during steady-state infiltration and evaporation at soil surface. For different soil types with homogeneous and layered heterogeneity, soil hydraulic parameters and unsaturated conductivities are estimated. Unlike the traditional indirect inversion method, the direct method does not require forward simulations to assess the measurement-to-model fit; thus, the knowledge of model boundary conditions (BC) is not required. Instead, the method employs a set of local approximate solutions to impose continuity of pressure head and soil water fluxes throughout the inversion domain, while measurements act to condition these solutions. Given sufficient measurements, it yields a well-posed system of nonlinear equations that can be solved with optimization in a single step and is thus computationally efficient. For both Gardner’s and van Genuchten’s soil water models, unsaturated hydraulic conductivities and pressure heads (including the unknown BC) can be accurately recovered. When increasing measurement errors are imposed, inversion becomes less accurate, but the solution is stable, i.e., estimation errors remain bounded. Moreover, when the unsaturated conductivity model is known, inversion can recover its parameters; if it is unknown, inversion can recover a nonparametric, piecewise continuous function to which soil parameters can be obtained via fitting. Overall, inversion accuracy of the direct method is influenced by (1) measurement density and errors; (2) rate of infiltration or evaporation; (3) variation of the unsaturated conductivity; (4) flow direction; (5) the number of soil layers.

Keywords

Inverse method Direct method Hydraulic conductivity Unsaturated flow 

Notes

Acknowledgements

This work is supported by the University of Wyoming Center for Fundamentals of Subsurface Flow of the School of Energy Resources (WYDEQ49811ZHNG) and NSF EPSCoR (EPS 1208909).

References

  1. Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Berlin (2010)CrossRefGoogle Scholar
  2. Bohne, K., Roth, C., Leij, F.J., van Genuchten, M.T.: Rapid method for estimating the unsaturated hydraulic conductivity from infiltration measurements. Soil Sci. 155(4), 237–244 (1993)CrossRefGoogle Scholar
  3. Brouwer, G.K., Fokker, P.A., Wilschut, F., Zijl, W.: A direct inverse model to determine permeability fields from pressure and flow rate measurements. Math. Geosci. 40(8), 907–920 (2008)CrossRefGoogle Scholar
  4. Carrera, J., Neuman, S.P.: Estimation of aquifer parameters under steady-state and transient condition: 2. Uniqueness, stability, and solution algorithms. Water Resour. Res. 22(2), 211–227 (1986)CrossRefGoogle Scholar
  5. Carsel, R.F., Parrish, R.S.: Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24(5), 755–769 (1988)CrossRefGoogle Scholar
  6. Crescimanno, G., Iovino, M.: Parameter estimation by inverse method based on one-step and multi-step outflow experiments. Geoderma 68, 257–277 (1995)CrossRefGoogle Scholar
  7. Dai, Z., Samper, J.: Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour. Res. 40, W07407 (2004). doi: 10.1029/2004WR003248 CrossRefGoogle Scholar
  8. Dai, Z., Samper, J., Wolfsberg, A., Levitt, D.: Identification of relative conductivity models for water flow and solute transport in unsaturated compacted bentonite. Phys. Chem. Earth 33, S177–S185 (2008). doi: 10.1016/j.pce.2008.10.012 CrossRefGoogle Scholar
  9. Dirksen, C.: Unsaturated hydraulic conductivity. In: Mullins, C.E., Smith, K.A. (eds.) Soil and Environmental Analysis: Physical Methods, Revised, and Expanded, pp. 183–237. CRC Press, Boca Raton (2000)Google Scholar
  10. Durner, W., Lipsius, K.: Determining soil hydraulic properties. In: Anderson, M.G. (ed.) Encyclopedia of Hydrological Sciences, chap. 75, Wiley, Chichester, pp. 1121–1143. doi: 10.1002/0470848944.hsa077b (2005)
  11. Durner, W., Schultze, E.B., Zurmuhl, T.: State-of-the-art in inverse modeling of inflow/outflow experiments. Characterization and measurement of the hydraulic properties of unsaturated porous media, pp. 661–681. In: van Genuchten, M.T., Leij, F.J., Wu, L. (eds.) Proceedings of International Workshop. CA. October 22–24, Riverside (1997)Google Scholar
  12. Eching, S.O., Hopmans, J.W.: Optimization of hydraulic functions from transient outflow and soil water pressure data. Soil Sci. Soc. Am. J. 57(5), 1167–1175 (1993)CrossRefGoogle Scholar
  13. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69–95 (1998)CrossRefGoogle Scholar
  14. Gardner, W.: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85, 228–232 (1958)CrossRefGoogle Scholar
  15. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970). doi: 10.1093/biomet/57.1.97 CrossRefGoogle Scholar
  16. Hill, M.C., Tiedeman, C.R.: Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley-Interscience, New York (2007)CrossRefGoogle Scholar
  17. Irsa, J., Zhang, Y.: A new direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resour. Res. 48(W09), 526 (2012). doi: 10.1029/2011WR011756 Google Scholar
  18. Ines, A.V.M., Mohanty, B.P.: Near-surface soil moisture assimilation to quantify effective soil hydraulic properties using genetic algorithm. I. Conceptual modeling. Water Resour. Res. 44, W06422 (2008). doi: 10.1029/2007WR005990 Google Scholar
  19. Jiao, J.Y., Zhang, Y.: Two-dimensional inversion of confined and unconfined aquifers under unknown boundary condition. Adv. Water Resour. 65, 43–57 (2014a)CrossRefGoogle Scholar
  20. Jiao, J.Y., Zhang, Y.: A method based on local approximate solutions (LAS) for inverting transient flow in heterogeneous aquifer. J. Hydrol. 514, 145–149 (2014b)CrossRefGoogle Scholar
  21. Jiao, J.Y., Zhang, Y.: Tensor hydraulic conductivity estimation for heterogeneous aquifers under unknown boundary conditions. Groundwater 53, 293–304 (2015a). doi: 10.1111/gwat.12202 CrossRefGoogle Scholar
  22. Jiao, J.Y., Zhang, Y.: Functional parameterization for hydraulic conductivity inversion with uncertainty quantification. Hydrogeol. J. 23, 597–610 (2015b). doi: 10.1007/s10040-014-120205 CrossRefGoogle Scholar
  23. Jiao, J., Zhang, Y.: Direct method of hydraulic conductivity structure identification for subsurface transport modeling. J. Hydrol. Eng. 21(10), 04016033 (2016). doi: 10.1061/(ASCE)HE.1943-5584.0001410
  24. Kool, J.B., Parker, J.C.: Analysis of the inverse problem for transient unsaturated flow. Water Resour. Res. 24(6), 817–830 (1988)CrossRefGoogle Scholar
  25. Kool, J.B., Parker, J.C., van Genuchten, MTh: Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies. Soil Sci. Soc. Am. J. 49, 1348–1354 (1985a)CrossRefGoogle Scholar
  26. Kool, J.B., Parker, J.C., van Genuchten, MTh: Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: II. Experimental studies. Soil Sci. Soc. Am. J. 49, 354–1359 (1985b)CrossRefGoogle Scholar
  27. Labaky, W., Devlin, J.F., Gillham, R.W.: Field comparison of the point velocity probe with other groundwater velocity measurement method. Water Res. Res. 45: W00D30 (2009). doi: 10.1029/2008WR007066
  28. Levasseur, S., Malecot, Y., Boulon, M., Flavigny, E.: Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. Int. J. Numer. Anal. Methods Geomech. 33(12), 1485–1511 (2009)CrossRefGoogle Scholar
  29. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)CrossRefGoogle Scholar
  30. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)CrossRefGoogle Scholar
  31. Mertens, J., Madsen, H., Kristensen, M., Jacques, D., Feyen, J.: Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in situ estimates. Hydrol. Process. 19, 1611–1633 (2005). doi: 10.1002/hyp.5591 CrossRefGoogle Scholar
  32. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  33. Nasta, P., Huynh, S., Hopmans, J.W.: Simplified multistep outflow method to estimate unsaturated hydraulic functions for coarse-textured soils. Soil Sci. Soc. Am. J. 75, 418–425 (2011). doi: 10.2136/sssaj2010.0113 CrossRefGoogle Scholar
  34. Pasquier, P., Marcotte, D.: Steady-and transient-state inversion in hydrogeology by successive flux estimation. Adv. Water Resour. 29(12), 1934–1952 (2006)CrossRefGoogle Scholar
  35. Ponzini, G., Crosta, G.: The comparison model method: a new arithmetic approach to the discrete inverse problem of groundwater hydrology. Transp. Porous Media 3(4), 415–436 (1988)CrossRefGoogle Scholar
  36. Simunek, J.R., Jaramillo, R.A., Schaap, M.G., Vandervaere, J.P., van Genuchten, MTh: Using an inverse method to estimate the hydraulic properties of crusted soils from tension disc infiltrometer data. Geoderma 86, 61–81 (1998)CrossRefGoogle Scholar
  37. Scharnagl, B., Vrugt, J.A, Vereecken, H., Herbst M.: Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci. 15, 3043–3059. https://www.hydrol-earth-syst-sci.net/15/3043/2011/. doi: 10.5194/hess-15-3043-2011 (2011)
  38. Shin, Y., Mohanty, B.P., Ines, A.V.M.: Estimating effective soil hydraulic properties using spatially distributed soil moisture and evapotranspiration products at multiple scales. Vadose Zone J. 12, 1–16 (2013). doi: 10.2136/vzj2012.0094 CrossRefGoogle Scholar
  39. Sun, N.Z.: Inverse Problems in Groundwater Modeling, vol. 364. Kluwer Academic Publishers, Netherlands (1994)Google Scholar
  40. To-Viet, N., Min, T.-K., Shin, H.: Using inverse analysis to estimate hydraulic properties of unsaturated sand from one-dimensional outflow experiments. Eng. Geol. 164, 163–171 (2013). doi: 10.1016/j.enggeo.2013.07.005 CrossRefGoogle Scholar
  41. Toorman, A.F., Wierenga, P.J., Hills, R.G.: Parameter estimation of hydraulic properties from one-step outflow data. Water Resour. Res. 28(11), 3021–3028 (1992)CrossRefGoogle Scholar
  42. Van Dam, J.C., Stricker, J.N.M., Verhoef, A.: Inverse method for determining soil hydraulic functions from one-step outflow experiments. Soil Sci. Soc. Am. J. 56, 1042–1050 (1992)CrossRefGoogle Scholar
  43. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  44. Vassena, C., Giudici, M., Ponzini, G., Parravicini, G., Meles, G.A.: Tomographic approach to identify transmissivity with differential system method. J. Hydrol. Eng. 12(6), 617–625 (2007)CrossRefGoogle Scholar
  45. Vrugt, J.A., Stauffer, P.H., Wohling, T., Robinson, B.A., Vesselinov, V.V.: Inverse modeling of subsurface flow and transport properties: a review with new developments. Vadose Zone J. 7, 843–864 (2008)CrossRefGoogle Scholar
  46. Yang, C., Dai, Z., Romanak, K., Hovorka, S., Trevino, R.: Inverse modeling of water-rock-CO2 batch experiments: implications for potential impacts on groundwater resources at carbon sequestration sites. Environ. Sci. Technol. 48(5), 2798–2806 (2014)CrossRefGoogle Scholar
  47. Ye, M., Neuman, S.P., Meyer, P.D., Pohlmann, K.F.: Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff. Water Resour. Res. 41, W12429 (2005). doi: 10.1029/2005WR004260 Google Scholar
  48. Yuan, Y.: A review of trust region algorithms for optimization. In: ICIAM 99: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics, Edinburgh, Oxford University Press, USA (2000)Google Scholar
  49. Zhang, Y.: Nonlinear inversion of an unconfined aquifer: simultaneous estimation of heterogeneous hydraulic conductivities, recharge rates, and boundary conditions, Transp. Porous Media 102, 275–299 (2014). doi: 10.1007/s11242-014-0275-x CrossRefGoogle Scholar
  50. Zhang, Z.F., Ward, A.L., Gee, G.W.: Estimating soil hydraulic parameters of a field drainage experiment using inverse techniques. Vadose Zone J. 2, 201–211 (2003)CrossRefGoogle Scholar
  51. Zhang, Y., Gable, C.W., Person, M.: Equivalent hydraulic conductivity of an experimental stratigraphy–implications for basin-scale flow simulations. Water Resour. Res. 42, W05404 (2006). doi: 10.1029/2005WR004720 Google Scholar
  52. Zhang, Y., Irsa, J., Jiao, J.Y.: Three-dimensional aquifer inversion under unknown boundary conditions. J. Hydrol. 509, 416–429 (2014). doi: 10.1016/j.jhydrol.2013.11.024 CrossRefGoogle Scholar
  53. Zhou, H., Gomez-Hernandez, J.J., Li, L.: Inverse methods in hydrogeology: evolution and recent trends. Adv. Water Resour. 63, 22–37 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsUniversity of WyomingLaramieUSA
  2. 2.Department of Civil and Architectural EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations