Advertisement

Transport in Porous Media

, Volume 116, Issue 2, pp 613–644 | Cite as

Effective Permeability of a Porous Medium with Spherical and Spheroidal Vug and Fracture Inclusions

  • Mojdeh Rasoulzadeh
  • Fikri J. KuchukEmail author
Article

Abstract

Vugs and fractures are common features of carbonate formations. The presence of vugs and fractures in porous media can significantly affect pressure and flow behavior of a fluid. A vug is a cavity (usually a void space, occasionally filled with sediments), and its pore volume is much larger than the intergranular pore volume. Fractures occur in almost all geological formations to some extent. The fluid flow in vugs and fractures at the microscopic level does not obey Darcy’s law; rather, it is governed by Stokes flow (sometimes is also called Stokes’ law). In this paper, analytical solutions are derived for the fluid flow in porous media with spherical- and spheroidal-shaped vug and/or fracture inclusions. The coupling of Stokes flow and Darcy’s law is implemented through a no-jump condition on normal velocities, a jump condition on pressures, and generalized Beavers–Joseph–Saffman condition on the interface of the matrix and vug or fracture. The spheroidal geometry is used because of its flexibility to represent many different geometrical shapes. A spheroid reduces to a sphere when the focal length of the spheroid approaches zero. A prolate spheroid degenerates to a long rod to represent the connected vug geometry (a tunnel geometry) when the focal length of the spheroid approaches infinity. An oblate spheroid degenerates to a flat spheroidal disk to represent the fracture geometry. Once the pressure field in a single vug or fracture and in the matrix domains is obtained, the equivalent permeability of the vug with the matrix or the fracture with matrix can be determined. Using the effective medium theory, the effective permeability of the vug–matrix or fracture–matrix ensemble domain can be determined. The effect of the volume fraction and geometrical properties of vugs, such as the aspect ratio and spatial distribution, in the matrix is also investigated. It is shown that the higher volume fraction of the vugs or fractures enhances the effective permeability of the system. For a fixed-volume fraction, highly elongated vugs or fractures significantly increase the effective permeability compared with shorter vugs or fractures. A set of disconnected vugs or fractures yields lower effective permeability compared with a single vug or fracture of the same volume fraction.

Nomenclature

a

Major semi-axis of spheroid

b

Minor semi-axis of spheroid

c

Confocal distance

\(\mathbf {e}_{1,2,3}\)

Normal unit vectors of the curvilinear coordinate system

\(\epsilon \)

Rate of strain tensor

\(G_n\)

Gegenbauer function of first kind

\(\varGamma _{p,v}\)

Interface of porous and vuggy domain

\(h_{1,2,3}\)

Scale factors of curvilinear coordinate system

\(H_n\)

Gegenbauer function of second kind

\(\eta \)

Spheroidal coordinate

k

Permeability

\(\lambda \)

Beavers–Joseph–Saffman empirical coefficient

\(\mu \)

Fluid viscosity

\(\mathbf {n}\)

Unit normal vector to the interface

\(Q_n\)

Legendre polynomial of second kind and order n

p

Pressure

\(P_n\)

Legendre polynomial of first kind and order n

\(\phi \)

Spheroidal coordinate

\(\psi \)

Streamline

r

Distance from the origin

\(\rho \)

Fluid density and spherical coordinate

s

Spheroidal coordinate

\(\varvec{\tau }\)

Unit tangential vector to the interface

t

Spheroidal coordinate

\( U_\infty \)

Constant velocity field at the infinity

u

Velocity element

\(\mathbf {u}\)

Velocity vector

v

Velocity element

x

Cartesian coordinate

\(\xi \)

Spheroidal coordinate

\(\chi \)

Curvilinear coordinate

x

Dummy variable

y

Cartesian coordinate

z

Cartesian coordinate

\(\varOmega _\mathrm{m}\)

Porous matrix

\(\varOmega _\mathrm{v}\)

Vug domain

Subscripts

m

Parameter in matrix

v

Parameter in vug

in

Parameter in porous inclusion

s

Parameter for spherical shape of vug or inclusion

Notes

Acknowledgements

The authors are grateful to Schlumberger for permission to publish this article.

References

  1. Aarseth, E.S., Bourgine, B., Castaing, C., Chiles, J.R., Christensen, N.R., Eeles, M., Fillion, E., Genter, A., Gillespie, R.A., Hakansson, E., Jorgensen, K.Z., Lindgaard, H.F., Madsen, L., Odling, N.E., Olsen, C., Reffstrup, J., Trice, R., Walsh, J.J., Watterson, J.: Interim guide to fracture interpretation and flow modeling in fractured reservoirs. Technical report EUR 17116 EN, European Commission (1997)Google Scholar
  2. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)CrossRefGoogle Scholar
  3. Arbogast, T.D., Brunson, S.B., Jennings, J.: A preliminary computational investigation of a macro-model for vuggy porous media. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F., (eds.), Computational Methods in Water Resources: Volume 1, volume 55, Part 1 of Developments in Water Science, pp. 267–278. Elsevier, Chapel Hill (2004)Google Scholar
  4. Arbogast, T., Gomez, M.S.M.: A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)CrossRefGoogle Scholar
  5. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)CrossRefGoogle Scholar
  6. Arns, C., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R., Pinczewski, W., Bakke, S., Berge, L., Oren, P., Knackstedt, M.: Pore-scale characterization of carbonates using X-ray microtomography. SPE J. 10(4), 475–484 (2005)CrossRefGoogle Scholar
  7. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  8. Belfield, W., Sovich, J.: Fracture statistics from horizontal wellbores. In: Paper HWC-94-37, SPE/CIM/CANMET International Conference on Recent Advances in Horizontal Well Applications, March 20–23, Calgary, Canada (1994)Google Scholar
  9. Bertels, S.P., DiCarlo, D.A., Blunt, M.J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37(3), 649–662 (2001)CrossRefGoogle Scholar
  10. Bouchelaghem, F.: Flow study in a double porosity medium containing ellipsoidal occluded macro-voids. Math. Geosci. 43(1), 55–73 (2011a)CrossRefGoogle Scholar
  11. Bouchelaghem, F.: Flow study in a double porosity medium containing low concentrations of ellipsoidal occluded macro-voids. Math. Geosci. 43(1), 23–53 (2011b)CrossRefGoogle Scholar
  12. Braester, C.: Groundwater flow through fractured rocks, pp. 22–42. In: Luis S., Usunoff E.J. (eds.) GROUNDWATER—Vol. II, EOLSS/ UNESCO, 1st edn (2005)Google Scholar
  13. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizittskonstanten und leitfhigkeiten der mischkrper aus isotropen substanzen. Annalen der Physik 416(7), 636–664 (1935)CrossRefGoogle Scholar
  14. Charalambopoulos, A., Dassios, G.: Complete decomposition of axisymmetric Stokes flow. Int. J. Eng. Sci. 40(10), 1099–1111 (2002)CrossRefGoogle Scholar
  15. Committee on Fracture Characterization and Fluid Flow: Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. The National Academies Press, Washington, DC (1996)Google Scholar
  16. Dassios, G.: The fundamental solutions for irrotational and rotational Stokes flow in spheroidal geometry. Math. Proc. Camb. Philos. Soc. 143, 243–253 (2007)CrossRefGoogle Scholar
  17. Dassios, G., Hadjinicolaou, M., Payatakes, A .C.: Generalized eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates. Q. Appl. Math LII(1), 157–191 (1994)CrossRefGoogle Scholar
  18. Dassios, G., Payatakes, A.C., Vafeas, P.: Interrelation between Papkovich–Neuber and Stokes general solutions of the Stokes equations in spheroidal geometry. Q. J. Mech. Appl. Math. 57(2), 181–203 (2004)CrossRefGoogle Scholar
  19. Detwiler, R.L., Rajaram, H., Glass, R.J.: Nonaqueous-phase-liquid dissolution in variable-aperture fractures: development of a depth-averaged computational model with comparison to a physical experiment. Water Resour. Res. 37(12), 3115–3129 (2001)CrossRefGoogle Scholar
  20. Fitts, C.R.: Modeling three-dimensional flow about ellipsoidal inhomogeneities with application to flow to a gravel-packed well and flow through lens-shaped inhomogeneities. Water Resour. Res. 27(5), 815–824 (1991)CrossRefGoogle Scholar
  21. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Mechanics of Fluids and Transport Processes. Springer, Berlin (1983)Google Scholar
  22. Iyengar, T., Radhika, T.: Stokes flow of an incompressible micropolar fluid past a porous spheroidal shell. Bull. Pol. Acad. Sci. Tech. Sci. 59(1), 63–74 (2011)Google Scholar
  23. Iyengar, T., Radhika, T.: Couple stress fluid past a porous spheroidal shell with solid core under Stokesian approximation. J. Sci. Res. Rep. 6(1), 43–60 (2015)Google Scholar
  24. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Math. Proc. Camb. Philos. Soc. 73, 231–238 (1973)CrossRefGoogle Scholar
  25. Keller, A.A., Roberts, P.V., Blunt, M.J.: Effect of fracture aperture variations on the dispersion of contaminants. Water Resour. Res. 35(1), 55–63 (1999)CrossRefGoogle Scholar
  26. Kuchuk, F., Biryukov, D., Fitzpatrick, T.: Fractured-reservoir modeling and interpretation. SPE J. 20(04) 983–1004 (2015)Google Scholar
  27. Lucia, F.J.: Carbonate Reservoir Characterization. Environmental Science. Springer, Berlin (1999)CrossRefGoogle Scholar
  28. Markov, M., Kazatchenko, E., Mousatov, A., Pervago, E.: Permeability of the fluid-filled inclusions in porous media. Transp. Porous Media 84(2), 307–317 (2010)CrossRefGoogle Scholar
  29. Moctezuma-Berthier, A., Vizika, O., Adler, P.: Macroscopic conductivity of vugular porous media. Transp. Porous Media 49(3), 313–332 (2002)CrossRefGoogle Scholar
  30. Moctezuma-Berthier, A., Vizika, O., Thovert, J.F., Adler, P.: One- and two-phase permeabilities of vugular porous media. Transp. Porous Media 56(2), 225–244 (2004)CrossRefGoogle Scholar
  31. Nurmi, R., Kuchuk, F., Cassell, B., Chardac, J.-L., Maguet, L.: Horizontal highlights. Schlumberger Middle East Well Eval. Rev. 16, 6–25 (1995). http://www.slb.com/~/media/Files/resources/mearr/wer16/rel_pub_mewer16_1.pdf
  32. Popov, P., Efendiev, Y., Qin, G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6(1), 162 (2009)CrossRefGoogle Scholar
  33. Radhika, T.S.L., Iyengar, T.: Stokes flow of an incompressible couple stress fluid past a porous spheroidal shell. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, volume III (2010)Google Scholar
  34. Raja Sekhar, G., Sano, O.: Viscous flow past a circular/spherical void in porous media—an application to measurement of the velocity of groundwater by the single boring method. J. Phys. Soc. Jpn. 69(8), 2479–2484 (2000)CrossRefGoogle Scholar
  35. Raja Sekhar, G., Sano, O.: Two-dimensional viscous flow in a granular material with a void of arbitrary shape. Phys. Fluids 15, 554–567 (2003)CrossRefGoogle Scholar
  36. Rubin, Y., Gómez-Hernández, J.J.: A stochastic approach to the problem of upscaling of conductivity in disordered media: theory and unconditional numerical simulations. Water Resour. Res. 26(4), 691–701 (1990)CrossRefGoogle Scholar
  37. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971)CrossRefGoogle Scholar
  38. Wieck, J., Person, M., Strayer, L.: A finite element method for simulating fault block motion and hydrothermal fluid flow within rifting basins. Water Resour. Res. 31(12), 3241–3258 (1995)CrossRefGoogle Scholar
  39. Zhao, C., Valliappan, S.: Numerical modelling of transient contaminant migration problems in infinite porous fractured media using finite/infinite element technique. Part II: parametric study. Int. J. Numer. Anal. Methods Geomech. 18(8), 543–564 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Schlumberger-Doll ResearchCambridgeUSA

Personalised recommendations