Transport in Porous Media

, Volume 116, Issue 1, pp 393–411 | Cite as

Fluid Penetration in a Deformable Permeable Web Moving Past a Stationary Rigid Solid Cylinder

  • Nickolas D. Polychronopoulos
  • T. D. Papathanasiou
Article
  • 129 Downloads

Abstract

We present an analysis for the process of fluid infiltration into a deformable, thin and permeable web that moves in close proximity over a rigid and stationary solid cylinder. While this is a process of significant interest in a range of coating, printing and composites pultrusion processes, its hydrodynamics have received limited attention in the open literature. The flow in the film separating the web from the cylinder is described by lubrication theory, while fluid transfer into the web is governed by Darcy’s law. The deformation of the web at each position is a linear function of the local gap pressure; this is consistent with the assumption of a thin and rigidly supported web. Our results indicate that the web/fluid interface is forced away from the cylinder surface as it approaches it and bounces back downstream from the minimum separation point. This behavior produces a non-symmetric gap between the adjacent surfaces, and this is shown to have critical influence on the final amount of penetrating fluid. The extent of fluid penetration is also found to be affected by the web elasticity (expressed by the dimensionless Ne number) and permeability (expressed in dimensionless form via \(\hat{{K}})\) where under a specific Ne and \(\hat{{K}}\) combination a maximum penetration depth is obtained. Finally, we derive a closed-form asymptotic solution for the final infiltration depth in the limit of Ne \(<<\) 1 and \(\hat{{K}}<<\)1 and test its predictions against the above-mentioned numerical results.

Keywords

Deformable porous medium Fluid penetration Cylinder Lubrication Pultrusion Coating 

References

  1. Andersson, H.M., Lundström, T.S., Gebart, B.R.: Numerical model for vacuum infusion manufacturing of polymer composites. Int. J. Numer. Method. Heat. 13, 383–394 (2003)CrossRefGoogle Scholar
  2. Ascanio, G., Carreau, P.J., Brito-de la Fuente, E., Tanguy, P.A.: Forward deformable roll coating at high speed with Newtonian fluids. Chem. Eng. Res. Des. 82, 390–397 (2004)CrossRefGoogle Scholar
  3. Ascanio, G., Ruiz, G.: Measurement of pressure distribution in a deformable nip of counter-rotating rolls. Meas. Sci. Technol. 17, 2430–2436 (2006)CrossRefGoogle Scholar
  4. Barry, S., Aldis, G., Mercer, G.: Injection of fluid into a layer of deformable porous medium. Appl. Mech. Rev. 48, 722–726 (1995)CrossRefGoogle Scholar
  5. Bates, P.J., Kendall, J., Taylor, D., Cunningham, M.: Pressure build-up during melt impregnation. Compos. Sci. Technol. 62, 379–384 (2002)CrossRefGoogle Scholar
  6. Bates, P.J., Zou, X.P.: Polymer melt impregnation of glass roving. Int. Polym. Proc. 27, 376–386 (2002)CrossRefGoogle Scholar
  7. Bear, J.: Dynamics of Fluids in Porous Media. Courier Dover Publications, New York (1988)Google Scholar
  8. Benkreira, H., Edwards, M.F., Wilkinson, W.L.: A semi-empirical model of the forward roll coating flow of Newtonian fluids. Chem. Eng. Sci. 36, 423–427 (1981)CrossRefGoogle Scholar
  9. Benkreira, H., Edwards, M.F., Wilkinson, W.L.: Roll coating of purely viscous liquids. Chem. Eng. Sci. 36, 429–434 (1981)CrossRefGoogle Scholar
  10. Benkreira, H., Patel, R.: Direct gravure roll coating. Chem. Eng. Sci. 48, 2329–2335 (1993)CrossRefGoogle Scholar
  11. Bijsterbosch, H., Gaymans, R.J.: Impregnation of glass rovings with a polyamide melt. Part 1: impregnation bath. Compos. Part A-Appl. S. 4, 85–92 (1993)Google Scholar
  12. Carvalho, M.S., Scriven, L.E.: Deformable roll coating flows: steady state and linear perturbation analysis. J. Fluid Mech. 339, 143–172 (1997)CrossRefGoogle Scholar
  13. Carvalho, M.S., Scriven, L.E.: Flows in forward deformable roll coating gaps: comparison between spring and plane-strain models or roll cover. J. Comput. Phys. 138, 449–479 (1997)CrossRefGoogle Scholar
  14. Carvalho, M.S.: Effect of thickness and viscoelastic properties of roll cover on deformable roll coating flows. Chem. Eng. Sci. 58, 4323–4333 (2003)CrossRefGoogle Scholar
  15. Chen, K.S.A., Scriven, L.E.: Liquid penetration into a deformable porous substrate. Tappi J. 73, 151–161 (1990)Google Scholar
  16. Cohu, O., Magnin, A.: Forward roll coating of Newtonian fluids with deformable rolls: an experimental investigation. Chem. Eng. Sci 52, 1339–1347 (1997)CrossRefGoogle Scholar
  17. Coyle, D.J.: Forward roll coating with deformable rolls: a simple one dimensional elastohydrodynamic model. Chem. Eng. Sci. 43, 2673–2684 (1988)CrossRefGoogle Scholar
  18. Coyle, D.J., Macosko, C.W., Scriven, L.E.: The fluid dynamics of reverse roll coating. AIChE J. 36, 161–174 (1990)CrossRefGoogle Scholar
  19. Devisetti, S.K., Bousfield, D.W.: Fluid absorption during forward roll coating on porous webs. Chem. Eng. Sci. 65, 3528–3537 (2010)CrossRefGoogle Scholar
  20. Ding, X., Fuller, T.F., Harris, T.A.L.: Predicting fluid penetration during slot die coating onto porous substrates. Chem. Eng. Sci. 99, 67–75 (2013)CrossRefGoogle Scholar
  21. Ding, X., Ebin, J.P., Harris, T.A.L., Li, Z., Fuller, T.F.: Analytical models for predicting penetration depth during slot die coating onto porous media. AIChE J. 60, 4241–4252 (2014)CrossRefGoogle Scholar
  22. Farboodmanesh, S., Chen, J., Mead, J.L., White, K.D., Yesilalan, H.E., Laoulache, R., Warner, S.B.: Effect of coating thickness and penetration on shear behavior of coated fabrics. J. Elastom. Plast. 37, 197–227 (2005)CrossRefGoogle Scholar
  23. Gaymans, R.J., Wevers, E.: Impregnation of a glass fibre roving with a polypropylene melt in a pin assisted process. Compos. Part A-Appl. S. 29, 663–670 (1998)CrossRefGoogle Scholar
  24. Gibson, A.G., Månson, J.A.: Impregnation technology for thermoplastic matrix composites. Compos. Part A-Appl. S. 3, 223–233 (1992)Google Scholar
  25. Gostling, M.J., Savage, M.D., Young, A.E., Gaskell, P.H.: A model for deformable roll coating with negative gaps and incompressible compliant layers. J. Fluid Mech. 489, 155–184 (2003)CrossRefGoogle Scholar
  26. Hayes, R.E., Bertrand, F.H., Tanguy, P.A.: Modeling of fluid/paper interaction in the application nip of a film coater. Transport Porous Med 40, 55–72 (2000)CrossRefGoogle Scholar
  27. Hewson, R.W., Kapur, N., Gaskell, P.H.: A two-scale model for discrete cell gravure roll coating. Chem. Eng. Sci. 66, 3666–3674 (2011)CrossRefGoogle Scholar
  28. Jones, M.B., Fulford, G.R., Please, C.P., McElwain, D.L.S., Collins, M.J.: Elastohydrodynamics of the Eyelid Wiper. Bull. Math. Biol 70, 323–343 (2008)CrossRefGoogle Scholar
  29. Kapur, N.: A parametric study of direct gravure coating. Chem. Eng. Sci. 58, 2875–2882 (2003)CrossRefGoogle Scholar
  30. Leal, L.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Properties. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  31. Lécuyer, H.A., Mmbaga, J.P., Hayes, R.E., Bertrand, F.H., Tanguy, P.A.: Modeling of forward roll coating flows with a deformable roll: application to non-Newtonian industrial coating formulations. Comput. Chem. Eng. 33, 1427–1437 (2009)CrossRefGoogle Scholar
  32. Lee, S., Na, Y.: Effect of roll patterns on the ink transfer in R2R printing process. Int. J. Precis. Eng. Man. 10, 123–130 (2009)CrossRefGoogle Scholar
  33. Lundström, T.S., Hellström, J.G.I., Frishfelds, V.: Transversal flow-induced deformation of fibres during composites manufacturing and the effect of permeability. J. Reinf. Plast. Comp. 32, 1129–1135 (2013)CrossRefGoogle Scholar
  34. Madasu, S., Cairncross, R.A.: Effect of substrate flexibility on dynamic wetting: a finite element model. Comput. Methods Appl. Mech. Engrgy 192, 2671–2702 (2003)CrossRefGoogle Scholar
  35. Madasu, S.: Effect of soluble surfactants on dynamic wetting of flexible substrates: a finite element study. Phys. Fluids 21, 122103 (2009)CrossRefGoogle Scholar
  36. Matilainen, K., Hämäläinen, T., Savolainen, A., Sipiläinen-Malm, T., Peltonen, J., Erho, T., Smolander, M.: Performance and penetration of laccase and ABST inks on various printing substrates. Colloids Surf. B 90, 119–128 (2012)CrossRefGoogle Scholar
  37. Middleman, S.: Modeling Axisymmetric Flows: Dynamics of Films. Jets and Drops, San Diego (1995)Google Scholar
  38. Nam, J., Carvalho, M.S.: Flow in tensioned-web-over-slot die coating: effect of die lip design. Chem. Eng. Sci. 65, 3957–3971 (2010)CrossRefGoogle Scholar
  39. Polychronopoulos, N.D., Papathanasiou, T.D.: Pin-assisted resin infiltration of porous substrates. Compos. Part A-Appl. S. 71, 126–135 (2015)CrossRefGoogle Scholar
  40. Ramon, G.Z., Huppert, H.E., Lister, J.R., Stone, H.A.: On the hydrodynamic interaction between a particle and a permeable surface. Phys. Fluids 25, 073103 (2013)CrossRefGoogle Scholar
  41. Romero, O.J., Suszynski, W.J., Scriven, L.E., Carvalho, M.S.: Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. J. Non-Newt. Fluid Mech. 118, 137–156 (2004)CrossRefGoogle Scholar
  42. Sandström, A., Dam, H.F., Krebs, F.C., Edman, L.: Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1–5 (2012)CrossRefGoogle Scholar
  43. Shampine, L., Kierzenka, J., Reichelt, M.: Solving Boundary Values Problems for ordinary Differential Equations in MATLAB with bvp4C. The MathWorks Inc. http://www.mathworks.com/bvp_tutorial (2000)
  44. Skotheim, J.M., Mahadevan, L.: Soft lubrication. Phys. Rev. Lett. 92, 245509 (2004)CrossRefGoogle Scholar
  45. Skotheim, J.M., Mahadevan, L.: Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17, 092101 (2005)CrossRefGoogle Scholar
  46. Sullivan, T., Middleman, S., Keunings, R.: Use of a finite element method to interpret rheological effects in blade coating. AIChE J. 33, 2047–2056 (1987)CrossRefGoogle Scholar
  47. Toll, S.: Packing Mechanics of fiber reinforcements. Pol. Eng. Sci. 38, 1337–1350 (1998)CrossRefGoogle Scholar
  48. Yesilalan, H.E., Warner, S.B., Laoulache, R.: Penetration of blade-applied viscous coatings into yarns in a woven fabric. Text. Res. J. 80, 1930–1941 (2010)CrossRefGoogle Scholar
  49. Yin, X., Kumar, S.: Lubrication flow between a cavity and a flexible wall. Phys. Fluids 17, 063101 (2005)CrossRefGoogle Scholar
  50. Yin, X., Kumar, S.: Two-dimensional simulations of flow near a cavity and a flexible solid boundary. Phys. Fluids 18, 063103 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nickolas D. Polychronopoulos
    • 1
    • 2
  • T. D. Papathanasiou
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of ThessalyVolosGreece
  2. 2.Polydynamics, Inc.DundasCanada

Personalised recommendations