Skip to main content
Log in

Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited

Transport in Porous Media Aims and scope Submit manuscript

Cite this article

I give no sources, because it is indifferent to me whether what I have thought has already been thought before me by another.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Abstract

Steady, laminar, fully developed flows of a Newtonian fluid driven by a constant pressure gradient in (1) a curvilinear constant cross section triangle bounded by two straight no-slip segments and a circular meniscus and (2) a wedge bounded by two rays and an adjacent film bulging near the corner are studied analytically by the theory of holomorphic functions and numerically by finite elements. The analytical solution of the first problem is obtained by reducing the Poisson equation for the longitudinal flow velocity to the Laplace equation, conformal mapping of the corresponding transformed physical domain onto an auxiliary half-plane and solving there the Signorini mixed boundary value problem (BVP). The numerical solution is obtained by meshing the circular sector and solving a system of linear equations ensuing from the Poisson equation. Comparisons are made with known solutions for flows in a rectangular conduit, circular annulus and Philip’s circular duct with a no-shear sector. Problem (2) is treated by the Saint-Venant semi-inverse method: the free surface (quasi-meniscus) is reconstructed by a one-parametric family, which specifies a holomorphic function of the first derivative of the physical coordinate with respect to an auxiliary variable. The latter maps the flow domain onto a quarter of a unit disc where a mixed BVP for a characteristic function is solved by the Zhukovsky–Chaplygin method. Velocity distributions in a cross section perpendicular to the flow direction are obtained. It is shown that the change of the type of the boundary condition from no slip to perfect slip (along the meniscus) causes a dramatic increase of the total flow rate (conductance). For example, the classical Saint-Venant formulae for a sector, with all three boundaries being no-slip segments, predict up to four times smaller rate as compared to a free surface meniscus. Mathematically equivalent problems of unconfined flows in aquifers recharged by a constant-intensity infiltration are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Moffatt and Duffy (1980), a century after Saint-Venant, re-obtained his full solution in an approximate manner. This example illustrates the Wittgenstein approach (see the epigraph).

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  • Adler, P.M.: Porous Media: Geometry and Transports. Butterworth/Heinemann, Boston (1992)

    Google Scholar 

  • Ajaev, V.S.: Interfacial Fluid Mechanics. A Mathematical Modeling Approach. Springer, New York (2012)

    Book  Google Scholar 

  • Al-Futaisi, A., Patzek, T.W.: Impact of wettability on two-phase flow characteristics of sedimentary rocks: quasi-static model. Water Resour. Res. 39(2), 1042–1055 (2003a)

    Article  Google Scholar 

  • Al-Futaisi, A., Patzek, T.W.: Three-phase hydraulic conductances in angular capillaries. Soci. Petro. Engrg. J. 8(3), 252–261 (2003b)

    Google Scholar 

  • Al-Maktoumi, A., Kacimov, A., Al-Ismaily, S., Al-Busaidi, H.: Infiltration into two-layered soil: the Green-Ampt and Averyanov models revisited. Transp. Porous Media 109, 169–193 (2015). doi:10.1007/s11242-015-0507-8

    Article  Google Scholar 

  • Arutyunyan, NKh, Abramyan, B.L.: Torsion of Elastic Bodies. Fizmatgiz, Moscow (in Russian) (1963)

    Google Scholar 

  • Averyanov, S.F.: The dependence of permeability of soils on their air content. Dokl. AN SSSR 69, 141–144 (1949)

  • Avkhadiev, F.G., Kacimov, A.R.: Analytical solutions and estimates for microlevel flows. J. Porous Media 8, 125–148 (2005)

    Article  Google Scholar 

  • Babskii, V.G., Kopachevskii, N.D., Myshkis, A.D., Slobozhanin, L.A., Tyuptsov, A.D.: Fluid Mechanics of Weightlessness. Nauka, Moscow (in Russian) (1976)

    Google Scholar 

  • Baret, J.-C., Decre, M.M.J., Herminghaus, S., Seemann, R.: Transport dynamics in open microfluidic grooves. Langmuir 23, 5200–5204 (2007)

    Article  Google Scholar 

  • Berhanu, M., Petroff, A., Devauchelle, O., Kudrolli, A., Rothman, D.H.: Shape and dynamics of seepage erosion in a horizontal granular bed. Phys. Rev. E 86, 041304 (2012)

    Article  Google Scholar 

  • Blossey, R.: Thin Liquid Films. Dewetting and Polymer Flow. Springer, Dordrecht (2012)

    Book  Google Scholar 

  • Blunt, M.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001)

    Article  Google Scholar 

  • Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25, 1069–1089 (2002)

    Article  Google Scholar 

  • Brauner, N., Rovinsky, J., Maron, D.M.: Analytical solution for laminar–laminar two-phase stratified flow in circular conduits. Chem. Eng. Commun. 141–142, 103–143 (1996)

    Article  Google Scholar 

  • Brinkmann, M., Khare, K., Seemann, R.: Control of liquids by surface energies. In: Hardt, S., Schönfeld, F. (eds.) Microfluidic Technologies for Miniaturized Analysis Systems, pp. 157–197. Berlin (2007)

  • Constantinescu, V.N.: Laminar Viscous Flow. Springer, Berlin (1995)

    Book  Google Scholar 

  • Darhuber, A.A., Troian, S.M., Reisner, W.W.: Dynamics of capillary spreading along hydrophilic microstripes. Phys. Rev., E 64(3), 031603 (2001)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, New York (1992)

    Google Scholar 

  • Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)

    Book  Google Scholar 

  • Gakhov, F. D.: Boundary Value Problems. Nauka, Moscow (in Russian). (English translation of the 1st edn., Addison Wesley, New York, 1966) (1997)

  • Goldstein, A., Ullmann, A., Brauner, N.: Characteristics of stratified laminar flows in inclined pipes. Int. J. Multiphase Flow 75, 267–287 (2015)

    Article  Google Scholar 

  • Gurevich, M.I.: Theory of Jets in Ideal Fluids. Academic Press, New York (1965)

    Google Scholar 

  • Hammecker, C., Barbiero, L., Boivin, P., Maeght, J.L., Diaw, E.H.B.: A geometrical pore model for estimating the microscopical pore geometry of soil with infiltration measurements. Transp. Porous Media 54, 193–219 (2004)

    Article  Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  • Held, R.J., Celia, M.A.: Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour. 24, 325–343 (2001)

    Article  Google Scholar 

  • Herminghaus, S., Brinkmann, M., Seemann, R.: Wetting and dewetting of complex surface geometries. Ann. Rev. Mater. Res. 38, 101–121 (2008)

    Article  Google Scholar 

  • Hui, M.H., Blunt, M.J.: Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B 104, 3833–3845 (2000)

    Article  Google Scholar 

  • Ilyinsky, N.B., Kacimov, A.R.: The estimation of integral seepage characteristics of hydraulic structures in terms of the theory of inverse boundary-value problems. Z. Angew. Math. Mech., B 72(2), 103–112 (1992)

    Article  Google Scholar 

  • Kachinsky, N.A.: Soil Physics. V.II. Moscow, Vyshsaya Shkola (in Russian) (1970)

  • Kacimov, A.R.: Optimization of the protrusion shape for a Couette type flow. Optim. Control Appl. Methods 15, 193–203 (1994)

    Article  Google Scholar 

  • Kacimov, A.R., Kayumov, I.R.: Viscous flow through straight pore channels. J. Porous Media 3, 199–208 (2002)

    Google Scholar 

  • Kacimov, A.R., Kayumov, I.R., Al-Maktoumi, A.: Rainfall induced groundwater mound in wedge-shaped promontories: the Strack–Chernyshov model revisited. Adv. Water Resour. 97, 110–119 (2016). http://www.sciencedirect.com/science/article/pii/S0309170816303633

  • Kacimov, A.R., Obnosov, YuV, Al-Maktoumi, A., Al-Balushi, M.: How much of floating LNAPL can a phreatic surface sustain? Riesenkampf’s scheme revisited. Water Resour. Res. 47, W11521 (2011). doi:10.1029/2010WR010369

    Article  Google Scholar 

  • Kacimov, A.R., Obnosov, Yu., Mosavat, N.: Analytical solution for supercritical upconing of two immiscible fluids moving to a horizontal well. J Pet Sci Eng, submitted

  • Khare, K., Herminghaus, S., Baret, J.C., Law, B.M., Brinkmann, M., Seemann, R.: Switching liquid morphologies on linear grooves. Langmuir 23, 12997–13006 (2007)

    Article  Google Scholar 

  • Khare, K., Zhou, J., Yang, S.: Tunable open channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25, 12794–12799 (2009)

    Article  Google Scholar 

  • Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover, New York (2005)

    Google Scholar 

  • Kitron-Belinkov, M., Marmur, A., Trabold, T., Dadheech, G.V.: Groovy-drops: effect of groove curvature on spontaneous capillary flow. Langmuir 23, 8406–8410 (2007)

    Article  Google Scholar 

  • Kołodziej, J.A., Fraska, A.: Elastic torsion of bars possessing regular polygon in cross-section using BCM. Comput. Struct. 84, 78–91 (2005)

    Article  Google Scholar 

  • Lazouskaya, V., Jin, Y., Or, D.: Interfacial interactions and colloid retention under steady flows in a capillary channel. J. Colloid Interface Sci. 303, 171–184 (2006)

    Article  Google Scholar 

  • Mahdavi, A., Seyyedian, H.: Steady-state groundwater recharge in trapezoidal-shaped aquifers: a semi-analytical approach based on variational calculus. J. Hydrol. 512, 457–462 (2014)

    Article  Google Scholar 

  • Mathworks: Partial Differential Equation Toolbox Users Guide. The Mathworks Inc, Natick (1998)

    Google Scholar 

  • McComb, H.G.: Torsional stiffness of thin-walled shells having reinforcing cores and rectangular, triangular, or diamond cross section. NACA Technical Report 1359, Langley Aeronautical Lab (1957)

  • Moffatt, H.K., Duffy, B.R.: Local similarity solutions and their limitations. J. Fluid Mech. 96, 299–313 (1980)

    Article  Google Scholar 

  • Nardin, C.L., Weislogel, M.M.: Capillary driven flows along differentially wetted interior corners. NASA Report, CR - 2005-213799, 1–24 (2005)

  • Or, D., Tuller, M.: Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Adv. Water Resour. 26(1), 883–898 (2003)

    Article  Google Scholar 

  • Patzek, T.W., Kristensen, J.D.: Shape factor and hydraulic conductance in noncircular capillaries: II. Two-phase creeping flow. J. Colloid Interface Sci. 236(2), 305–317 (2001)

    Article  Google Scholar 

  • Patzek, T.W., Silin, D.B.: Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. J. Colloid Interface Sci. 236(2), 295–304 (2001)

    Article  Google Scholar 

  • Petroff, A.P., Devauchelle, O., Abrams, D.M., Lobkovsky, A.E., Kudrolli, A., Rothman, D.H.: Geometry of valley growth. J. Fluid Mech. 673, 245–254 (2011)

    Article  Google Scholar 

  • Petroff, A.P., Devauchelle, O., Seybold, H., Rothman, D.H.: Bifurcation dynamics of natural drainage networks. Phil. Trans. R. Soc., A 371, 20120365 (2013)

  • Philip, J.R.: Flow in porous media. Annu. Rev. Fluid Mech. 2, 177–204 (1970)

    Article  Google Scholar 

  • Philip, J.R.: Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys. (ZAMP) 23, 353–372 (1972)

    Article  Google Scholar 

  • Polubarinova-Kochina, P.Ya.: Theory of Ground-Water Movement. Moscow Nauka, in Russian (English translation of the first edition: Princeton Univ. Press, Princeton, 1962) (1977)

  • Polzin, K.A., Choueiri, E.A.: Similarity parameter for capillary flows. J. Phys. D Appl. Phys. 36, 3156–3167 (2003)

    Article  Google Scholar 

  • Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (2011)

    Google Scholar 

  • Quere, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)

    Article  Google Scholar 

  • Ransohoff, T.C., Radke, C.J.: Laminar flow of a wetting liquid along the corners of a predominantly gas- occupied noncircular pore. J. Colloid Interface Sci. 121, 392–401 (1988)

    Article  Google Scholar 

  • Rejmer, K., Dietrich, S., Napiórkowski, M.: Filling transition for a wedge. Phys. Rev. E 60, 4027–4042 (1999)

    Article  Google Scholar 

  • Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., Stegmaier, T., Sarsour, J., Linke, M., Konrad, W.: Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. R. Soc. Interface (2012). doi:10.1098/rsif.2011.0847

  • Rye, R.R., Mann Jr., J.A., Yost, F.G.: The flow of liquids in surface grooves. Langmuir 12, 555–565 (1996)

    Article  Google Scholar 

  • Saint-Venant, B.: Sur la torsion des prismes à bases mixtiligne, et sur une singularité que peuvent offrir certains emplois de la coordonnée logarithmique du système cylindrique isotherme de Lamé. Comptes Rendus des Séances de l’Académie des Sciences. Paris 87, 849–854 (1878). (in French)

    Google Scholar 

  • Seemann, R., Brinkmann, M., Herminghaus, S., Khare, K., Law, B.M., McBride, S., Kostourou, K., Gurevich, E., Bommer, S., Herrmann, C., Michler, D.: Wetting morphologies and their transitions in grooved substrates. J. Phys. Condens. Matter. 23, 184108 (2011)

    Article  Google Scholar 

  • Sekulic, D.P.: Wetting and spreading of liquid metals through open microgrooves and surface alterations. Heat Transf. Eng. 32(7–8), 648–657 (2011). doi:10.1080/01457632.2010.509758

    Article  Google Scholar 

  • Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. The Biharmonic Equation, Poisson’s Equation. Springer (2000)

  • Shahraeeni, E., Or, D.: Pore-scale analysis of evaporation and condensation dynamics in porous media. Langmuir 26(17), 13924–13936 (2010)

    Article  Google Scholar 

  • Slezkin, N.A.: Dynamics of Viscous Incompressible Fluid. Gostechizdat, Moscow (in Russian) (1955)

  • Strack, O.D.L.: Groundwater Mechanics. Prentice-Hall Inc, Englewood Cliffs (1989)

    Google Scholar 

  • Teo, C.J., Khoo, B.C.: Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluidics Nanofluidics 7, 353–382 (2009)

    Article  Google Scholar 

  • Timoshenko, S.P., Goodier, J.C.: Theory of Elasticity. McGraw-Hill, New York (1970)

    Google Scholar 

  • Uflyand, Y.S.: Integral Transforms in Problems of Elasticity Theory. Nauka, Leningrad (in Russian) (1968)

  • Versluys, T.: Die Kapillaritat der Boden. Internet. Mitt, fur Bodenkunde, Bd. 7, Berlin (in German) (1917)

  • Wang, C.Y.: Torsion of a compound bar bounded by cylindrical polar coordinates. Q. J. Mech. Appl. Math. 48, 359–400 (1995)

    Article  Google Scholar 

  • Wang, C.Y.: Torsion of polygonal bar with core of different material. J. Engrg. Mech. 125, 1218–1221 (1999)

    Article  Google Scholar 

  • Wang, C.Y.: Flow over a surface with parallel grooves. Phys. Fluids 15, 1114–1121 (2003)

    Article  Google Scholar 

  • Weislogel, M.M.: Compound capillary rise. J. Fluid Mech. 709, 622–647 (2012)

    Article  Google Scholar 

  • White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1991)

    Google Scholar 

  • Wigglesworth, L.A., Stevenson, A.C.: Flexure and torsion of cylinders with cross-sections bounded by orthogonal circular arcs. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 170, 391–414 (1939)

  • Wolfram, S.: Mathematica: a system for doing mathematics by computer. Addison-Wesley, Redwood City (1991)

  • Youngs, E.G., Kacimov, A.R.: Conduction through spherical particles at low liquid content. Int. J. Heat Mass Transf. 50(1–2), 292–302 (2007)

    Article  Google Scholar 

  • Zhang, Q., Karadimitriou, N.K., Hassanizadeh, S.M., Kleingeld, P.J., Imhof, A.: Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. J. Colloid Interface Sci. 401, 141–147 (2013)

    Article  Google Scholar 

  • Zhou, D., Blunt, M.J., Orr, F.M.: Hydrocarbon drainage along corners of noncircular capillaries. J. Colloid Interface Sci. 187, 11–21 (1997)

    Article  Google Scholar 

  • Zunker, F.: Das Verhalten des Bodens zum Wasser. Handbuch der Bodenlehre. Bd. VI, Berlin (in German) (1930)

Download references

Acknowledgments

The work has been supported by the SQU under Grant IG-AGR/SWAE/14/02 and the Russian Foundation for Basic Research under Grants 15-01-06029-a, 15-41-02433 (RFBR-Tatarstan). Helpful comments by three anonymous referees are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kacimov.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacimov, A.R., Maklakov, D.V., Kayumov, I.R. et al. Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited. Transp Porous Med 116, 115–142 (2017). https://doi.org/10.1007/s11242-016-0767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0767-y

Keywords

Navigation