Skip to main content

Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates

Abstract

We perform co-current spontaneous imbibition ambient-condition experiments in three carbonates with a wide range of permeability under strongly water-wet conditions. We measure water saturation profiles as a function of distance and time in air-filled rocks with no initial water saturation using X-ray CT scanning. We demonstrate that the saturation profiles are functions of distance divided by the square root of time. We also demonstrate that the profiles are consistent with analytical solutions for imbibition in one dimension, and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental results. We discuss how, in combination with conventional measurements of relative permeability (steady-state or using Buckley–Leverett theory in an unsteady-state experiment), the capillary pressure can be determined, or how the relative permeability can be determined from the spontaneous imbibition experiment and the capillary pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. The spreadsheets can be downloaded from https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/research/pore-scale-modelling/software/

Abbreviations

\(\alpha \) :

Capillary pressure exponent

\(\lambda _\mathrm{{nw}}\) :

Mobility of the non-wetting phase

\(\lambda _\mathrm{{t}}\) :

Total mobility

\(\lambda _\mathrm{{w}}\) :

Mobility of the wetting phase

\(\rho _\mathrm{{nw}}\) :

Density of the non-wetting phase

\(\rho _\mathrm{{w}}\) :

Density of the wetting phase

\(\mu _\mathrm{{nw}}\) :

Viscosity of the non-wetting phase

\(\mu _\mathrm{{w}}\) :

Viscosity of the wetting phase

\(\phi \) :

Porosity

\(\omega \) :

Imbibed distance over square root of time

C :

Proportionality constant used in the analytical solution

\({{D}}(S_\mathrm{{w}}\)):

Capillary dispersion coefficient

f :

Fractional flow for viscous-dominated flow

\(f^{\prime }\) :

First derivative of f

F :

Fractional flow for capillary-dominated flow

\(F^{\prime }\) :

First derivative of F

\(F^{\prime \prime }\) :

Second derivative of F

\(g_x\) :

Gravitational acceleration

k :

Permeability

\(k_\mathrm{{r}}\) :

Relative permeability

\(k_\mathrm{{rg}}\) :

Gas relative permeability

\(k_{\mathrm{{rg}}, \mathrm{{max}}}\) :

Maximum gas relative permeability

\(k_\mathrm{{rw}}\) :

Water relative permeability

\(k_\mathrm{{rw,max}}\) :

Maximum water relative permeability

m :

Corey gas exponent

n :

Corey water exponent

\(P_\mathrm{{c}}\) :

Capillary pressure

\(P_\mathrm{{c,entry}}\) :

Entry capillary pressure

\(P_\mathrm{{nw}}\) :

Non-wetting phase pressure

\(P_\mathrm{{w}}\) :

Wetting phase pressure

\(q_\mathrm{{t}}\) :

Total Darcy velocity

\(q_\mathrm{{nw}}\) :

Non-wetting phase Darcy velocity

\(q_\mathrm{{w}}\) :

Wetting phase Darcy velocity

\(S_\mathrm{{gr}}\) :

Residual gas saturation

\(S_\mathrm{{w}}\) :

Water saturation

\(S_\mathrm{{wi}}\) :

Initial water saturation

\(S_\mathrm{{wir}}\) :

Irreducible water saturation

t :

Time

\(v_\mathrm{{sh}}\) :

Shockfront moving speed

\(v_\mathrm{{shD}}\) :

Dimensionless shockfront moving speed

x :

Distance

References

  • Ashton, M.: The stratigraphy of the Lincolnshire limestone formation (Bajocian) in Lincolnshire and Rutland (Leicestershire). Proc. Geol. Assoc. 91, 203–223 (1980)

    Article  Google Scholar 

  • Babadagli, B., Ershaghi, I.: Imbibition assisted two-phase flow in natural fractures. In: SPE Western Regional Meeting (1992)

  • Bourbiaux, B.J., Kalaydjian, F.J.: Experimental study of cocurrent and countercurrent flows in natural porous media. SPE Reserv. Eng. 5, 361–368 (1990)

    Article  Google Scholar 

  • Brenchley, P.J., Rawson, P.F.: The Geology of England and Wales. The Geological Society, London (2006)

    Google Scholar 

  • Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  • Dake, L.P.: Fundamentals of reservoir engineering, vol. 8. Elsevier, New York (1983)

    Google Scholar 

  • Fernø, M.A., Haugen, Ă…., Wickramathilaka, S., Howard, J., Graue, A., Mason, G., Morrow, N.R.: Magnetic resonance imaging of the development of fronts during spontaneous imbibition. J. Pet. Sci. Eng. 101, 1–11 (2013)

    Article  Google Scholar 

  • Garg, A., Zwahlen, E., Patzek, T.W.: Experimental and numerical studies of one-dimensional imbibition in Berea sandstone. In: American Geophysical Union Hydrology Days (1996)

  • Graue, A., Fernø, M.: Water mixing during spontaneous imbibition at different boundary and wettability conditions. J. Pet. Sci. Eng. 78, 586–595 (2011)

    Article  Google Scholar 

  • Handy, L.L.: Determination of effective capillary pressures for porous media from imbibition data. AIME 219, 75–80 (1960)

    Google Scholar 

  • Haugen, Ă…., Fernø, M.A., Mason, G., Morrow, N.R.: Capillary pressure and relative permeability estimated from a single spontaneous imbibition test. J. Pet. Sci. Eng. 115, 66–77 (2014)

    Article  Google Scholar 

  • Li, K., Horne, R.N.: Characterization of spontaneous water imbibition into gas-saturated rocks. SPE J. 6, 375–384 (2001)

    Article  Google Scholar 

  • Li, K., Chow, K., Horne, R.N.: Effect of initial water saturation on spontaneous water imbibition. In: SPE Western Regional/AAPG Pacific Section Joint Meeting (2002)

  • Li, K., Horne, R.N.: Extracting capillary pressure and global mobility from spontaneous imbibition data in oil–water–rock systems. SPE J. 10, 458–465 (2005)

    Article  Google Scholar 

  • Lide, D.R.: CRC handbook of chemistry and physics. CRC, Boca Raton (2004)

    Google Scholar 

  • Mason, G., Fischer, H., Morrow, N.R., Johannesen, E., Haugen, Ă…., Graue, A., Fernø, M.A.: Oil production by spontaneous imbibition from sandstone and chalk cylindrical cores with two ends open. Energy Fuels 24, 1164–1169 (2010)

    Article  Google Scholar 

  • Mason, G., Fernø, M.A., Haugen, Ă…., Morrow, N.R., Ruth, D.W.: Spontaneous counter-current imbibition outwards from a hemi-spherical depression. J. Pet. Sci. Eng. 90–91, 131–138 (2012)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 110, 268–293 (2013)

    Article  Google Scholar 

  • McWhorter, D.B., Sunada, D.K.: Exact integral solutions for two-phase flow. Water Resour. Res. 26(3), 399–413 (1990)

    Article  Google Scholar 

  • McWhorter, D.B., Sunada, D.K.: Exact integral solutions for two-phase flow: reply. Water Resour. Res 25(5), 1479 (1992)

    Article  Google Scholar 

  • Morrow, N.R., Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interf. Sci. 6, 321–337 (2001)

    Article  Google Scholar 

  • Olafuyi, O.A., Cinar, Y., Knackstedt, M.A., Pinczewski, W.V.: Spontaneous imbibition in small cores. In: Asia Pacific Oil and Gas Conference (2007)

  • Pentland, C.H., El-Maghraby, R., Iglauer, S., Blunt, M.J.: Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. Geophys. Res. Lett. 38, L06401 (2011)

    Article  Google Scholar 

  • Pooladi-Dravish, M., Firoozabadi, A.: Cocurrent and countercurrent imbibition in a water-wet matrix block. SPE J. 5, 3–11 (2000)

    Article  Google Scholar 

  • Schmid, K.S., Geiger, S., Sorbie, K.S.: Semianalytical solutions for cocurrent and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow. Water Resour. Res. 47, W02550 (2011)

    Article  Google Scholar 

  • Schmid, K.S., Geiger, S.: Universal scaling of spontaneous imbibition for water-wet systems. Water Resour. Res. 48, W03507 (2012)

    Article  Google Scholar 

  • Suzanne, K., Hamon, G., Billiotte, J., Trocme, V.: Experimental relationships between residual gas saturation and initial gas saturation in heterogeneous sandstone reservoirs. In: SPE Annual Technical Conference and Exhibition (2003)

  • Tavassoli, Z., Zimmerman, R.W., Blunt, M.J.: Analysis of counter-current imbibition with gravity in weakly water-wet systems. J. Pet. Sci. Eng. 48, 94–104 (2005)

    Article  Google Scholar 

  • Unsal, E., Mason, G., Morrow, N.R., Ruth, D.W.: Co-current and counter-current imbibition in independent tubes of non-axisymmetric geometry. J. Colloid Interface Sci. 306, 105–117 (2007)

    Article  Google Scholar 

  • Unsal, E., Mason, G., Morrow, N.R., Ruth, D.W.: Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores. Langmuir 25, 3387–3395 (2009)

    Article  Google Scholar 

  • Wright, V.P., Platt, N.H., Marriott, S.B., Beck, V.H.: A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic–Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sediment. Geol. 100, 143–158 (1995)

    Article  Google Scholar 

  • Zhang, X., Morrow, N.R., Ma, S.: Experimental verification of a modified scaling group for spontaneous imbibition. SPE Reserv. Eng. 11, 280–285 (1996)

    Article  Google Scholar 

  • Zhou, X., Morrow, N.R., Ma, S.: Interrelationship of wettability, initial water saturation, aging time, and oil recovery by spontaneous imbibition and waterflooding. SPE J. 5, 199–207 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the Qatar Carbonates and Carbon Storage Research Centre, QCCSRC, which is supported jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayef Alyafei.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyafei, N., Al-Menhali, A. & Blunt, M.J. Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates. Transp Porous Med 115, 189–207 (2016). https://doi.org/10.1007/s11242-016-0761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0761-4

Keywords