Skip to main content
Log in

Constitutive Relations for Reactive Transport Modeling: Effects of Chemical Reactions on Multi-phase Flow Properties

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The relationship between flow properties and chemical reactions is the key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multi-phase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore size distribution. The updated pore size distribution is converted back to a new capillary pressure–water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({\bar{S}}\) :

Effective water saturation

\(\beta \) :

Ratio of pore volume after reactions to before reactions

\(\phi \) :

Porosity after reactions

\(\phi _0\) :

Initial porosity

\(\tau \) :

Tortuosity

h :

Capillary pressure head

K :

Permeability after reactions

\(K_0\) :

Initial permeability

\(K_{\mathrm{g}0}\) :

Initial gas permeability

\(k_{\mathrm{g}0}\) :

Initial gas relative permeability

\(K_{\mathrm{g}}\) :

Gas permeability after reactions

\(k_{\mathrm{g}}\) :

Gas relative permeability after reactions

\(K_{\mathrm{w}0}\) :

Initial water permeability

\(k_{\mathrm{w}0}\) :

Initial water relative permeability

\(K_{\mathrm{w}}\) :

Water permeability after reactions

\(k_{\mathrm{w}}\) :

Water relative permeability after reactions

m :

Empirical parameter in the van Genuchten hS relation

r :

Radius of capillary tube

\(r^*\) :

Radius after reactions

\(r_\mathrm{p}\) :

Maximum radius up to which pores are water-filled

S :

Water saturation

\(S_\mathrm{p}\) :

Water saturation when mineral reaction occurs

\(S_\mathrm{r}\) :

Residual water saturation

References

  • Algive, L., Békri, S., Nader, F.H., Lerat, O., Vizika, O.: Impact of diagenetic alterations on the petrophysical and multiphase flow properties of carbonate rocks using a reactive pore network modeling approach. Oil Gas Sci. Technol. 67(1), 147–160 (2012)

    Article  Google Scholar 

  • Bjørkum, P.A., Nadeau, P.H.: Temperature controlled porosity/permeability reduction, fluid migration, and petroleum exploration in sedimentary basins. APPEA J. 38(Part 1), 452–464 (1998)

    Google Scholar 

  • Blunt, M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Brace, W.: Permeability from resistivity and pore shape. J. Geophys. Res. 82(23), 3343–3349 (1977)

    Article  Google Scholar 

  • Carman, P.C.: Flow of Gases Through Porous Media. Academic Press, London (1956)

    Google Scholar 

  • Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.: Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8), 1017–1042 (2002)

    Article  Google Scholar 

  • Hiorth, A., Cathles, L., Madland, M.: The impact of pore water chemistry on carbonate surface charge and oil wettability. Transp. Porous Media 85(1), 1–21 (2010)

    Article  Google Scholar 

  • Kozeny, J.: Über kapillare Leitung des Wassers im Boden: (Aufstieg. Hölder-Pichler-Tempsky, Versickerung und Anwendung auf die Bewässerung) (1927)

  • Larson, R., Scriven, L., Davis, H.: Percolation theory of two phase flow in porous media. Chem. Eng. Sci. 36(1), 57–73 (1981)

    Article  Google Scholar 

  • Li, L., Peters, C.A., Celia, M.A.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29(9), 1351–1370 (2006)

    Article  Google Scholar 

  • Liu, H.-H., Zhang, G., Yi, Z., Wang, Y.: A permeability-change relationship in the dryout zone for \(\text{ CO }_2\) injection into saline aquifers. Int. J. Greenh. Gas Control 15, 42–47 (2013)

    Article  Google Scholar 

  • Mavis, F., Wilsey, E.: Filter sand permeability studies. Eng. News Rec. 118, 299–300 (1937)

    Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Nogues, J.P., Fitts, J.P., Celia, M.A., Peters, C.A.: Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 49(9), 6006–6021 (2013)

    Article  Google Scholar 

  • Ott, H., Roels, S., De Kloe, K.: Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone. Int. J. Greenh. Gas Control 43, 247–255 (2015)

    Article  Google Scholar 

  • Panda, M.N., Lake, L.W.: A physical model of cementation and its effects on single-phase permeability. AAPG Bull. 79(3), 431–443 (1995)

    Google Scholar 

  • Pruess, K., Müller, N.: Formation dry-out from CO\(_{2}\) injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resour. Res. 45(3) (2009). doi:10.1029/2008WR007101

  • Raoof, A., Nick, H., Hassanizadeh, S., Spiers, C.: Poreflow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 61, 160–174 (2013)

    Article  Google Scholar 

  • Ritter, H., Drake, L.: Pressure porosimeter and determination of complete macropore-size distributions. Pressure porosimeter and determination of complete macropore-size distributions. Ind. Eng. Chem. Anal. Ed. 17(12), 782–786 (1945)

    Article  Google Scholar 

  • Ryazanov, A., Van Dijke, M., Sorbie, K.: Two-phase pore-network modelling: existence of oil layers during water invasion. Transp. Porous Media 80(1), 79–99 (2009)

    Article  Google Scholar 

  • Schäfer, D., Schäfer, W., Kinzelbach, W.: Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J. Contam. Hydrol. 31(1), 167–186 (1998)

    Article  Google Scholar 

  • Schechter, R., Gidley, J.: The change in pore size distribution from surface reactions in porous media. AIChE J. 15(3), 339–350 (1969)

    Article  Google Scholar 

  • Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240(3), 539–558 (2005)

    Article  Google Scholar 

  • Taylor, S.W., Jaffé, P.R.: Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation. Water Resour. Res. 26(9), 2153–2159 (1990)

    Google Scholar 

  • Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Varloteaux, C., Békri, S., Adler, P.M.: Pore network modelling to determine the transport properties in presence of a reactive fluid: from pore to reservoir scale. Adv. Water Resour. 53, 87–100 (2013)

    Article  Google Scholar 

  • Verma, A., Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. Solid Earth (1978–2012) 93(B2), 1159–1173 (1988)

    Article  Google Scholar 

  • Xie, M., Mayer, K.U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Simunek, J.: Implementation and evaluation of permeability–porosity and tortuosity–porosity relationships linked to mineral dissolution–precipitation. Comput. Geosci. 19(3), 655–671 (2015)

  • Zhang, S, Liu, H.-H.: Porosity-permeability relationships in modeling salt precipitation during CO\(_2\) sequestration: review of conceptual models and implementation in numerical simulations. Int. J. Greenh. Gas Control 52, 24–31 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, HH., van Dijke, M.I.J. et al. Constitutive Relations for Reactive Transport Modeling: Effects of Chemical Reactions on Multi-phase Flow Properties. Transp Porous Med 114, 795–814 (2016). https://doi.org/10.1007/s11242-016-0744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0744-5

Keywords

Navigation