Skip to main content
Log in

Rayleigh-Type Surface Waves in a Swelling Porous Half-Space

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present work deals with the propagation of Rayleigh-type surface waves in a swelling porous elastic half-space consisting of three phases, namely solid matrix, liquid (viscous) and gas (inviscid). Using Eringen’s theory of swelling porous media, the governing equations are first solved by potential method. Frequency equation of Rayleigh-type waves has been derived, which is found to be irrational due to the presence of radicals in it. This irrational equation has been rationalized into a polynomial, which is then solved numerically for a specific porous model consisting of sandstone, water (viscous) and carbon dioxide as solid, liquid and gas phases, respectively. The nature of Rayleigh-type surface waves in the considered swelling porous medium is found to be inhomogeneous. Two modes of Rayleigh-type surface waves are noticed: One of them is the counterpart of the classical Rayleigh wave, while the second mode of Rayleigh-type surface waves arises due to the presence of either liquid or gas phases of the swelling porous medium. The variation of phase speeds and the corresponding attenuations of Rayleigh-type surface waves are depicted graphically against frequency parameter for the selected model. In the considered model, the swelling parameter has negligible effect on the propagation speeds of Rayleigh-type surface modes. It is also observed that in the absence of swelling, there still exist two modes of Rayleigh-type waves. The effect of the viscosity of the liquid constituent present in the pores is also examined on the phase speeds and attenuations. The results of Gales (Eur J Mech A Solids, 23:345–357 2004) for the cases of fluid saturation alone and gas saturation alone have also been deduced analytically as special cases from the present formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berryman, J.G., Thigpwn, L., Chin, R.C.Y.: Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am. 84(1), 360–373 (1988)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  • Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956a)

    Article  Google Scholar 

  • Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. II. higher-frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956b)

    Article  Google Scholar 

  • Brutsaert, W.: The propagation of elastic waves in unconsolidated unsaturated granular medium. J. Geophys. Res. 69, 243–257 (1964)

    Article  Google Scholar 

  • Coussy, O.: Mechanics and physics of porous solids. Wiley, West Sussex (2010)

    Book  Google Scholar 

  • Currie, P.K., Hayes, M.A., O’Leary, P.M.: Viscoelastic Rayleigh waves. Quar. Appl. Maths. 35, 35–53 (1977)

    Google Scholar 

  • Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid-filled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull. Seism. Soc. Am. 50(4), 599–607 (1960)

    Google Scholar 

  • Deresiewicz, H., Rice, J.T.: The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull. Seism. Soc. Am. 52(3), 595–625 (1962)

    Google Scholar 

  • Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seism. Soc. Am. 53(4), 783–788 (1963)

    Google Scholar 

  • Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32, 1337–1349 (1994). [Corrigendum, ibid, 42,949–949(2004)]

    Article  Google Scholar 

  • Gales, C.: Waves and vibrations in the theory of swelling porous elastic soils. Eur. J. Mech.-A/Solids. 23, 345–357 (2004)

    Article  Google Scholar 

  • Garg, S.K., Nayfeh, A.H.: Compressional wave propagation in liquid and/or gas saturated elastic porous media. J. Appl. Phys. 60, 3045–3055 (1986)

    Article  Google Scholar 

  • Goyal, S., Tomar, S.K.: Reflection and transmission of inhomogeneous waves at the plane interface between two dissimilar swelling porous half-spaces. Spec. Top. Rev. Porous Media Int. J. 6(1), 51–69 (2015a)

    Article  Google Scholar 

  • Goyal, S., Tomar, S.K.: Reflection/refraction of a dilatational wave at a plane interface between uniform elastic and swelling porous half-spaces. Transp. Porous Media 109, 609–632 (2015b)

    Article  Google Scholar 

  • Jones, J.P.: Rayleigh waves in a porous, elastic, saturated solid. J. Acoust. Soc. Am. 33(7), 959–962 (1961)

    Article  Google Scholar 

  • Leclaire, P., Cohen-Tenoudji, F., Puente, J.A.: Extension of Biot’s theory of wave propagation to frozen porous media. J. Acoust. Soc. Am. 96, 3753–3768 (1994)

    Article  Google Scholar 

  • Liu, Z., de Boer, R.: Dispersion and attenuation of surface waves in a fluid-saturated porous medium. Trans. Porous Med. 23, 207–223 (1997)

    Article  Google Scholar 

  • Lo, W.-C.: Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Adv. Water Resour. 31, 1399–1410 (2008)

    Article  Google Scholar 

  • Lo, W.C., Sposito, G., Majer, E.: Wave propagation through elastic porous media containing two immiscible fluids. Water Res. Res. 41(2), W02025 (2005)

    Article  Google Scholar 

  • Plona, T.J.: Observation of second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259–261 (1980)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Douglas, J.J.: Static and dynamic behaviour of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1428–1438 (1990a)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Douglas, J.J., Lovera, O.M.: A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1439–1448 (1990b)

    Article  Google Scholar 

  • Sharma, M.D.: Comments on paper Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium by W.-C. Lo [Adv. Water Resour. 31 (2008) 1399–1410]. Adv. Water Resour. 39, 137–138 (2012a)

    Article  Google Scholar 

  • Sharma, M.D.: Rayleigh waves in a partially saturated poroelastic solid. Geophys. J. Int. 189, 1203–1214 (2012b)

    Article  Google Scholar 

  • Sharma, M.D.: Rayleigh waves in dissipative poro-viscoelastic media. Bull. Seism. Soc. Am. 102, 2468–2483 (2012c)

    Article  Google Scholar 

  • Sharma, M.D.: Effect of local fluid flow on rayleigh waves in a double porosity solid. Bull. Seism. Soc. Am. 104, 2633–2643 (2014)

    Article  Google Scholar 

  • Sharma, M.D., Gogna, M.L.: Wave propagation in anisotropic liquid-saturated porous solids. J. Acoust. Soc. Am. 90(2), 1068–1073 (1991)

    Article  Google Scholar 

  • Tajuddin, M.: Rayleigh waves in a poroelastic half-space. J. Acoust. Soc. Am. 75, 682–684 (1984)

    Article  Google Scholar 

  • Tomar, S.K., Goyal, S.: Elastic waves in swelling porous media. Transp. Porous Media 100(1), 39–68 (2013). [Erratum to: Elastic waves in swelling porous media, ibid, 103(2), pp. 315–324, 2014]

    Article  Google Scholar 

  • Tuncay, K., Corapcioglu, M.Y.: Wave propagation in poroelastic media saturated by two fluids. J. Appl. Mech. 64, 313–320 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the unknown reviewers for their critical evaluation and useful suggestions, which had led to an improvement in the manuscript. One of the authors Suraj Goyal (SG) acknowledges the facilities provided by the Department of Mathematics, Panjab university, Chandigarh, India, to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tomar.

Appendices

Appendix 1

The explicit expressions of the various coefficients are as:

$$\begin{aligned}&A=a_{12}A_{1}+a_{13}A_{2}+a_{11}A_{3},B=-\chi _{f}A_{1}-\chi _{g}A_{2}+\varOmega _{s}A_{3}+a_{12}B_{1}+a_{13}B_{2}+a_{11}B_{3},\\&C=-\chi _{f}B_{1}-\chi _{g}B_{2}+\varOmega _{s}B_{3}+a_{12}C_{1}+a_{13}C_{2}+a_{11}C_{3},D=-\chi _{f}C_{1}-\chi _{g}C_{2}+\varOmega _{s}C_{3},\\&{\bar{B}}=\bar{a}_{11}{\bar{B}}_3,\qquad {\bar{C}}=-\chi _{g}{\bar{B}}_{2}+\varOmega _{s}{\bar{B}}_{3}+{\bar{a}}_{11}C_{3},\\&A_{1}=a_{13}a_{23}-a_{12}a_{33},B_{1}=(a_{13}\chi _{fg}+a_{33}\chi _{f})-(a_{23}\chi _{g}+a_{12}\varOmega _{g}),\\&C_{1}=\varOmega _{g}\chi _{f}-\chi _{g}\chi _{fg},\\&A_{2}=a_{12}a_{23}-a_{13}a_{22},B_{2}=(a_{12}\chi _{fg}+a_{22}\chi _{g})-(a_{23}\chi _{f}+a_{13}\varOmega _{f}),\\&C_{2}=\varOmega _{f}\chi _{g}-\chi _{f}\chi _{fg},\\&A_{3}=a_{22}a_{33}-a^2_{23},\quad B_{3}=a_{33}\varOmega _{f}+a_{22}\varOmega _{g}-2a_{23}\chi _{fg},\quad C_{3}=\varOmega _{f}\varOmega _{g}-\chi ^2_{fg},\\&{\bar{B}}_{2}={\bar{a}}_{22}\chi _{g},{\bar{B}}_{3}={\bar{a}}_{22}\varOmega _{g},\\&a_{11}=\lambda +2\mu ,\quad a_{12}=-\sigma ^{f},\quad a_{13}=-\sigma ^{g},\quad a_{22}=-[\sigma ^{ff}+\iota \omega (\lambda _{\nu }+2\mu _{\nu })],\\&a_{23}=-\sigma ^{fg},\\&a_{33}=-\sigma ^{gg},{\bar{a}}_{11}=\mu ,{\bar{a}}_{22}=-\iota \omega \mu _{\nu },\chi _{f}=\chi _{ff}+\chi _{fg},\chi _{g}=\chi _{gg}+\chi _{fg},\\&\chi _{ff}=\frac{\iota }{\omega }\xi ^{ff},\\&\chi _{gg}=\frac{\iota }{\omega }\xi ^{gg},\chi _{fg}=\frac{\iota }{\omega }\xi ^{fg},\varOmega _{s}=\rho ^{s}_{0}+\chi _{f}+\chi _{g},\varOmega _{f}=\rho ^{f}_{0}+\chi _{ff},\varOmega _{g}=\rho ^{g}_{0}+\chi _{gg}. \end{aligned}$$

Appendix 2

The explicit expressions of the various coefficients used in the determinantal equation of the Rayleigh wave are as:

$$\begin{aligned} r_{1i}= & {} 2({\bar{a}}_{11}+f_i{\bar{a}}_{22}),r_{1J}={\bar{a}}_{11}+{\bar{f}}_j{\bar{a}}_{22}\,,r_{2i}=L_i+M_i+N_i~,~~r_{3i}=1-f_i\,,\\ r_{3J}= & {} 1-{\bar{f}}_j\,,r_{5i}=1-g_i\,,r_{5J}=1-{\bar{g}}_j\,,\text{ where }\,i=1,2,3;\,j=1,2;\,J = j+3. \end{aligned}$$

The explicit expressions of the various coefficients used in the secular equation of the Rayleigh wave are as:

$$\begin{aligned} d_0= & {} c_0^2 - c_1^2 b_{\alpha 3}^2 b_{\beta 1}^2 - c_2^2 b_{\alpha 3}^2 b_{\beta 2}^2 + c_3^2 b_{\beta 1}^2 b_{\beta 2}^2\,, d_1 = 2 c_0 c_3 - 2 c_1 c_2 b_{\alpha 3}^2\\ c_0= & {} b_0^2 - b_1^2 b_{\alpha 2}^2 b_{\alpha 3}^2 - b_2^2 b_{\alpha 2}^2 b_{\beta 1}^2 + b_3^2 b_{\alpha 3}^2 b_{\beta 1}^2 - b_4^2 b_{\alpha 2}^2 b_{\beta 2}^2 + b_5^2 b_{\alpha 3}^2 b_{\beta 2}^2\\&+\,b_6^2 b_{\beta 1}^2 b_{\beta 2}^2 - b_7^2 b_{\alpha 2}^2 b_{\alpha 3}^2 b_{\beta 1}^2 b_{\beta 2}^2\,,\\ c_1= & {} 2 \left( b_0 b_3 - b_1 b_2 b_{\alpha 2}^2 + b_5 b_6 b_{\beta 2}^2 - b_4 b_7 b_{\alpha 2}^2 b_{\beta 2}^2\right) \,,\\ c_2= & {} 2\left( b_0 b_5 - b_1 b_4 b_{\alpha 2}^2 + b_3 b_6 b_{\beta 1}^2 - b_2 b_7 b_{\alpha 2}^2 b_{\beta 1}^2\right) \,,\\ c_3= & {} 2\left( b_0 b_6 - b_2 b_4 b_{\alpha 2}^2 + b_3 b_5 b_{\alpha 3}^2 - b_1 b_7 b_{\alpha 2}^2 b_{\alpha 3}^2\right) \,,\\ b_0= & {} -a_1^2 b_{\alpha 1}^2 + a_2^2 b_{\alpha 2}^2 + a_3^2 b_{\alpha 3}^2 - a_4^2 b_{\alpha 1}^2 b_{\alpha 2}^2 b_{\beta 1}^2 - a_5^2 b_{\alpha 1}^2 b_{\alpha 3}^2 b_{\beta 1}^2 + a_6^2 b_{\alpha 2}^2 b_{\alpha 3}^2 b_{\beta 1}^2 \\&- a_7^2 b_{\alpha 1}^2 b_{\alpha 2}^2 b_{\beta 2}^2 - a_8^2 b_{\alpha 1}^2 b_{\alpha 3}^2 b_{\beta 2}^2 + a_9^2 b_{\alpha 2}^2 b_{\alpha 3}^2 b_{\beta 2}^2 - a_{10}^2 b_{\alpha 1}^2 b_{\alpha 2}^2 b_{\alpha 3}^2 b_{\beta 1}^2 b_{\beta 2}^2\,,\\ b_1= & {} 2\left( a_2 a_3 - a_4 a_5 b_{\alpha 1}^2 b_{\beta 1}^2 - a_7 a_8 b_{\alpha 1}^2 b_{\beta 2}^2\right) \,,\\ b_2= & {} -2\left( a_1 a_4 b_{\alpha 1}^2 - a_3 a_6 b_{\alpha 3}^2 + a_{10} a_8 b_{\alpha 1}^2 b_{\alpha 3}^2 b_{\beta 2}^2\right) \,,\\ b_3= & {} -2\left( a_1 a_5 b_{\alpha 1}^2 - a_2 a_6 b_{\alpha 2}^2 + a_{10} a_7 b_{\alpha 1}^2 b_{\alpha 2}^2 b_{\beta 2}^2\right) \,,\\ b_4= & {} -2\left( a_1 a_7 b_{\alpha 1}^2 - a_3 a_9 b_{\alpha 3}^2 + a_{10} a_5 b_{\alpha 1}^2 b_{\alpha 3}^2 b_{\beta 1}^2\right) \,, \\ \end{aligned}$$
$$\begin{aligned} b_5= & {} -2\left( a_1 a_8 b_{\alpha 1}^2 - a_2 a_9 b_{\alpha 2}^2 + a_{10} a_4 b_{\alpha 1}^2 b_{\alpha 2}^2 b_{\beta 1}^2\right) \,,\\ b_6= & {} -2\left( a_4 a_7 b_{\alpha 1}^2 b_{\alpha 2}^2 + a_5 a_8 b_{\alpha 1}^2 b_{\alpha 3}^2 - a_6 a_9 b_{\alpha 2}^2 b_{\alpha 3}^2\right) \,,\\ b_7= & {} -2(a_1 a_{10} + a_5 a_7 + a_4 a_8) b_{\alpha 1}^2\,,\\ a_1= & {} (f_{23} f_{32} - f_{22} f_{33}) \left( f_{15} f_{44} f_{51} + f_{11}^2 f_{54} - f_{15} f_{41} f_{54} + f_{14} f_{41} f_{55}\right. \\&\left. -f_{11} (f_{14} f_{51} + f_{44} f_{55})\right) ,\\ a_2= & {} (f_{23} f_{31} - f_{21} f_{33}) \left( -f_{15} f_{44} + f_{15} f_{42} f_{54} + f_{11} (f_{14} - f_{12} f_{54})\right. \\&\left. - f_{14} f_{42}f_{55}+ f_{12} f_{44} f_{55}\right) ,\\ a_3= & {} (f_{22} f_{31} - f_{21} f_{32}) \left( -f_{11} f_{14} + f_{15} f_{44} + f_{11} f_{13} f_{54} - f_{15} f_{43} f_{54} \right. \\&\left. + f_{14} f_{43}f_{55} - f_{13} f_{44} f_{55}\right) ,\\ a_4= & {} (f_{24} f_{33} - f_{23} f_{34}) \left( f_{11}^2 - f_{15} f_{41} + f_{15} f_{42} f_{51} + f_{12} f_{41} f_{55}\right. \\&\left. - f_{11} (f_{12} f_{51}+ f_{42} f_{55})\right) ,\\ a_5= & {} -(f_{24} f_{32} - f_{22} f_{34}) \left( f_{11}^2 - f_{15} f_{41} + f_{15} f_{43} f_{51} + f_{13} f_{41} f_{55}\right. \\&\left. - f_{11} (f_{13} f_{51} + f_{43} f_{55})\right) ,\\ a_6= & {} (f_{24} f_{31} - f_{21} f_{34}) \left( f_{11} (f_{12} - f_{13}) - f_{15} f_{42} + f_{15} f_{43} + f_{13} f_{42} f_{55} - f_{12} f_{43} f_{55}\right) ,\\ a_7= & {} (f_{23} - f_{25} f_{33}) \left( -f_{14} f_{41} + f_{11} f_{44} + f_{14} f_{42} f_{51} - f_{12} f_{44} f_{51} \right. \\&\left. + f_{12} f_{41} f_{54} - f_{11} f_{42} f_{54}\right) ,\\ a_8= & {} (f_{22} - f_{25} f_{32}) \left( -f_{11} f_{44} + f_{13} f_{44} f_{51} + f_{14} (f_{41} - f_{43} f_{51}) - f_{13} f_{41} f_{54} + f_{11} f_{43} f_{54}\right) ,\\ a_9= & {} -(f_{21} - f_{25} f_{31}) \left( f_{14} (f_{42} - f_{43}) - f_{12} f_{44} + f_{13} f_{44} - f_{13} f_{42} f_{54} + f_{12} f_{43} f_{54}\right) ,\\ a_{10}= & {} (f_{24} - f_{25} f_{34}) \left( -f_{12} f_{41} + f_{13} f_{41} + f_{11} f_{42} - f_{11} f_{43} - f_{13} f_{42} f_{51} + f_{12} f_{43} f_{51}\right) , \end{aligned}$$

where

$$\begin{aligned}&f_{11}=k_r,f_{12} = \frac{r_{12}}{r_{11}r_{52}}k_r,f_{13}= \frac{r_{13}}{r_{11}r_{53}}k_r,f_{14} = \frac{r_{14}}{r_{11}}\left( 2k_r^2-k_{\beta 1}^2\right) ,\\&f_{15}=\frac{r_{15}}{r_{11}r_{35}}\left( 2k_r^2-k_{\beta 2}^2\right) ,\\&f_{21}=k_r^2-\frac{r_{21}}{r_{11}}k_{\alpha 1}^2,f_{22} = \frac{1}{r_{11}r_{52}}\left( r_{12}k_r^2-r_{22}k_{\alpha 2}^2\right) ,f_{23} = \frac{1}{r_{11}r_{53}}\left( r_{13}k_r^2-r_{23}k_{\alpha 3}^2\right) ,\\&f_{24} = \frac{2r_{14}}{r_{11}}k_r,\\&f_{25}=\frac{2r_{15}}{r_{11}r_{35}}k_r,f_{31} = r_{31}k_r,f_{32} = \frac{r_{32}}{r_{52}}k_r,f_{33} = \frac{r_{33}}{r_{53}}k_r,f_{34} = r_{34},f_{41}=r_{31},\\&f_{42}=\frac{r_{32}}{r_{52}},f_{43} = \frac{r_{33}}{r_{53}},f_{44} = r_{34}k_r,f_{51} = r_{51},f_{54} = r_{54}k_r,f_{55} = \frac{r_{55}}{r_{35}}k_r. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Singh, D. & Tomar, S.K. Rayleigh-Type Surface Waves in a Swelling Porous Half-Space. Transp Porous Med 113, 91–109 (2016). https://doi.org/10.1007/s11242-016-0681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0681-3

Keywords

Navigation