Skip to main content
Log in

Fundamental Transport Property Relations in Porous Media Incorporating Detailed Pore Structure Description

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this article, we present fundamental transport property relations incorporating direct descriptors of the pore structure. The pore structure descriptors are defined from streamline decomposition of the numerical solutions of the transport equations. These descriptors have been introduced earlier, while the calculations are extended to voxel-based microstructures in this article. The pore structure descriptors for the respective transport equations are used in turn to obtain rigorous cross-property relations for porous media. We derive such cross-property relations exemplarily for computed tomography (CT) data and digital rock models of Fontainebleau sandstone, and CT data of two reservoir sandstone facies. Pore structure parameterizations of these porous media are given for electrical conductance and fluid permeability in the microstructure, yielding correlations for the transport property-dependent descriptors of effective porosity, tortuosity and constriction. These relations are shown to be well-correlated functions over the range of sample porosities for the Fontainebleau sandstone. Differences between the outcrop Fontainebleau sandstone and the reservoir samples are observed mainly in the derived hydraulic length descriptor. A quantitative treatment of the obtained cross-property functions is provided that could be applied for porous medium characterization. It is suggested that such cross-property investigation honoring the detailed microstructure will lead to more fundamental relations between porous medium properties, which could be exploited for example in rock typing or wire-line log interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. e-Core software version 1.5.2 from FEI (www.fei.com).

References

  • Adler, P.: Porous Media: Geometry and Transports. Butterworth-Heinemann, Oxford (1992)

    Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., et al.: Digital rock physics benchmarks–part ii: computing effective properties. Computers & Geosciences 50, 33–43 (2013)

    Article  Google Scholar 

  • Archie, G.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIMe 146(99), 54–62 (1942)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Martys, N.S.: Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E 72(4), 046,304 (2005)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, M.V., Lindquist, W.: Accurate estimation of transport properties from microtomographic images. Geophys. Res. Lett. 28(17), 3361–3364 (2001)

    Article  Google Scholar 

  • Auzerais, F., Dunsmuir, J., Ferreol, B., Martys, N., Olson, J., Ramakrishnan, T., Rothman, D., Schwartz, L.: Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23(7), 705–708 (1996)

    Article  Google Scholar 

  • Avellaneda, M., Torquato, S.: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Phys. Fluids A Fluid Dyn. 3, 2529 (1991)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover publications, New York (1988)

    Google Scholar 

  • Bear, J., Bachmat, Y.: A generalized theory on hydrodynamic dispersion in porous media. In: IASH Symposium on Artificial Recharge and Management of Aquifers, vol. 72, pp. 7–16 (1967)

  • Berg, C.F.: Re-examining Archie’s law: conductance description by tortuosity and constriction. Phys. Rev. E 86, 046,314 (2012)

  • Berg, C.F.: Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014)

  • Berryman, J.G., Milton, G.W.: Normalization constraint for variational bounds on fluid permeability. J. Chem. Phys. 83(2), 754–760 (1985)

    Article  Google Scholar 

  • Biswal, B., Manwart, C., Hilfer, R., Bakke, S., Øren, P.: Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Phys. A Stat. Mech. Appl. 273(3), 452–475 (1999)

    Article  Google Scholar 

  • Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1(1), 27–34 (1949)

    Article  Google Scholar 

  • Carcione, J.M., Ursin, B., Nordskag, J.I.: Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics 72(5), E193–E204 (2007)

    Article  Google Scholar 

  • Carman, P.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Coker, D.A., Torquato, S., Dunsmuir, J.H.: Morphology and physical properties of fontainebleau sandstone via a tomographic analysis. J. Geophys. Res. Solid Earth (1978–2012) 101(B8), 17,497–17,506 (1996)

    Article  Google Scholar 

  • Cushman, J.H., et al.: Dynamics of Fluids in Hierarchical Porous Media. Academic Press Inc.(London) Ltd., London (1990)

    Google Scholar 

  • Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84(3), 036,319 (2011)

    Article  Google Scholar 

  • Dullien, F.: Porous Media: Fluid Transport and Pore Structure, vol. 26. Academic press, London (1992)

    Google Scholar 

  • Dunn, K.J., LaTorraca, G.A., Bergman, D.J.: Permeability relation with other petrophysical parameters for periodic porous media. Geophysics 64(2), 470–478 (1999)

    Article  Google Scholar 

  • Fredrich, J.T., Lakshtanov, D., Lane, N., Liu, E.B., Natarajan, C., Ni, D.M., Toms, J., et al.: Digital rocks: developing an emerging technology through to a proven capability deployed in the business. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2014)

  • Gomari, K.A.R., Berg, C.F., Mock, A., Øren, P.E,. Petersen Jr., E., Rustad, A., Lopez, O.: Electrical and petrophysical properties of siliciclastic reservoir rocks from pore-scale modeling. In: SCA2011-20 Presented at the 2011 SCA International Symposium, Austin, Texas

  • Gomez, C.T., Dvorkin, J., Vanorio, T.: Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones. Geophysics 75(6), E191–E204 (2010)

    Article  Google Scholar 

  • Hasimoto, H.: On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5(02), 317–328 (1959)

    Article  Google Scholar 

  • Herrick, D.C., Kennedy, W.D.: Electrical efficiency-a pore geometric theory for interpreting the electrical properties of reservoir rocks. Geophysics 59(6), 918–927 (1994)

    Article  Google Scholar 

  • Hilfer, R.: Local-porosity theory for flow in porous media. Phys. Rev. B 45(13), 7115 (1992)

    Article  Google Scholar 

  • Hilfer, R.: Local porosity theory for electrical and hydrodynamical transport through porous media. Phys. A Stat. Mech. Appl. 194(1), 406–414 (1993)

    Article  Google Scholar 

  • Hilfer, R.: Review on scale dependent characterization of the microstructure of porous media. Transp. Porous Media 46(2–3), 373–390 (2002)

    Article  Google Scholar 

  • Hilfer, R., Manwart, C.: Permeability and conductivity for reconstruction models of porous media. Phys. Rev. E 64(2), 021,304 (2001)

    Article  Google Scholar 

  • Holzer, L., Wiedenmann, D., Münch, B., Keller, L., Prestat, M., Gasser, P., Robertson, I., Grobéty, B.: The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J. Mater. Sci. 48(7), 2934–2952 (2013)

    Article  Google Scholar 

  • Hoogschagen, J.: Diffusion in porous catalysts and adsorbents. Ind. Eng. Chem. 47(5), 906–912 (1955)

    Article  Google Scholar 

  • Jacquin, C.: Corrélation entre la perméabilité et les caractéristiques géométriques du grès de fontainebleau. Rev. Inst. Fr. Pet. 19, 921–937 (1964)

    Google Scholar 

  • Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57(20), 2564 (1986)

    Article  Google Scholar 

  • Katz, A., Thompson, A.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34(11), 8179 (1986)

    Article  Google Scholar 

  • Katz, A., Thompson, A.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. Solid Earth (1978–2012) 92(B1), 599–607 (1987)

    Article  Google Scholar 

  • Kenyon, W.: Nuclear magnetic resonance as a petrophysical measurement. The international journal of radiation applications and instrumentation. Part E. Nucl. Geophys. 6(2), 153–171 (1992)

    Google Scholar 

  • Kenyon, W., Day, P., Straley, C., Willemsen, J.: A three-part study of nmr longitudinal relaxation properties of water-saturated sandstones. SPE Form. Eval. 3(3), 622–636 (1988)

    Article  Google Scholar 

  • Koplik, J.: Creeping flow in two-dimensional networks. J. Fluid Mech. 119, 219–247 (1982)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319 (1997)

    Article  Google Scholar 

  • Kozeny, J.: Ueber kapillare leitung des wassers im boden. Wien Akad. Wiss 136(2a), 271 (1927)

    Google Scholar 

  • Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J.: Lattice-boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E 66(1), 016,702 (2002)

    Article  Google Scholar 

  • Martys, N.S., Torquato, S., Bentz, D.: Universal scaling of fluid permeability for sphere packings. Phys. Rev. E 50(1), 403 (1994)

    Article  Google Scholar 

  • Milton, G.: Correlation of the electromagnetic and elastic properties of composites and microgeometries corresponding with effective medium approximations. In: Physics and Chemistry of Porous Media, vol. 107, pp. 66–77. AIP Publishing (1984)

  • Monteagudo, J.E., Lage, P.L.: Cross-properties relations in 3d percolation networks: I. Network characteristic length determination. Transp. Porous Media 61(2), 143–156 (2005a)

    Article  Google Scholar 

  • Monteagudo, J.E., Lage, P.L.: Cross-properties relations in 3d percolation networks: Ii. Network permeability. Transp. Porous Media 61(3), 259–274 (2005b)

    Article  Google Scholar 

  • Mukerji, T., Mavko, G., Gomez, C.: Cross-property rock physics relations for estimating low-frequency seismic impedance trends from electromagnetic resistivity data. Lead. Edge 28(1), 94–97 (2009)

    Article  Google Scholar 

  • Øren, P., Antonsen, F., Rueslåtten, H., Bakke, S., et al.: Numerical simulations of nmr responses for improved interpretations of nmr measurements in reservoir rocks. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2002)

  • Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Øren, P.E., Bakke, S., Held, R.: Direct pore-scale computation of material and transport properties for north sea reservoir rocks. Water Resour. Res. 43(12), 1–11 (2007)

  • Owen, J.: The resistivity of a fluid filled porous body. J. Pet. Technol. 4, 169–176 (1952)

    Article  Google Scholar 

  • Paterson, M.: The equivalent channel model for permeability and resistivity in fluid-saturated rock–a re-appraisal. Mech. Mater. 2(4), 345–352 (1983)

    Article  Google Scholar 

  • Pilotti, M.: Reconstruction of clastic porous media. Transp. Porous Media 41(3), 359–364 (2000)

    Article  Google Scholar 

  • Pollock, D.W.: Semianalytical computation of path lines for finite-difference models. Gr. Water 26(6), 743–750 (1988)

    Article  Google Scholar 

  • Prager, S.: Viscous flow through porous media. Phys. Fluids (1958–1988) 4(12), 1477–1482 (1961)

    Article  Google Scholar 

  • Schwartz, L., Martys, N., Bentz, D., Garboczi, E., Torquato, S.: Cross-property relations and permeability estimation in model porous media. Phys. Rev. E 48(6), 4584 (1993)

    Article  Google Scholar 

  • Sevostianov, I., Shrestha, M.: Cross-property connections between overall electric conductivity and fluid permeability of a random porous media with conducting sceleton. Int. J. Eng. Sci. 48(12), 1702–1708 (2010)

    Article  Google Scholar 

  • Spanne, P., Thovert, J., Jacquin, C., Lindquist, W., Jones, K., Adler, P.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Article  Google Scholar 

  • Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C., Adler, P.: Grain reconstruction of porous media: application to a low-porosity fontainebleau sandstone. Phys. Rev. E 63(6), 061,307 (2001)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16. Springer, Berlin (2002)

    Google Scholar 

  • Torquato, S., Beasley, J.: Bounds on the permeability of a random array of partially penetrable spheres. Phys. Fluids (1958–1988) 30(3), 633–641 (1987)

    Article  Google Scholar 

  • Walderhaug, O., Eliassen, A., Aase, N.E.: Prediction of permeability in quartz-rich sandstones: examples from the norwegian continental shelf and the fontainebleau sandstone. J. Sediment. Res. 82(12), 899–912 (2012)

    Article  Google Scholar 

  • Widjajakusuma, J., Manwart, C., Biswal, B., Hilfer, R.: Exact and approximate calculations for the conductivity of sandstones. Phys. A Stat. Mech. Appl. 270(1), 325–331 (1999)

    Article  Google Scholar 

  • Wilkinson, D.: Modified drag theory of permeability. Phys. Fluids (1958–1988) 28(4), 1015–1022 (1985)

    Article  Google Scholar 

  • Wong, Pz, Koplik, J., Tomanic, J.: Conductivity and permeability of rocks. Phys. Rev. B 30(11), 6606 (1984)

    Article  Google Scholar 

  • Wyllie, M., Rose, W.D., et al.: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. J. Pet. Technol. 2(04), 105–118 (1950)

    Article  Google Scholar 

  • Zhan, X., Schwartz, L.M., Toksöz, M.N., Smith, W.C., Morgan, F.D.: Pore-scale modeling of electrical and fluid transport in berea sandstone. Geophysics 75(5), F135–F142 (2010)

    Article  Google Scholar 

  • Zhang, X., Knackstedt, M.A.: Direct simulation of electrical and hydraulic tortuosity in porous solids. Geophys. Res. Lett. 22(17), 2333–2336 (1995)

    Article  Google Scholar 

  • Zick, A., Homsy, G.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Fredrik Berg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, C.F., Held, R. Fundamental Transport Property Relations in Porous Media Incorporating Detailed Pore Structure Description. Transp Porous Med 112, 467–487 (2016). https://doi.org/10.1007/s11242-016-0661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0661-7

Keywords

Navigation