Advertisement

Transport in Porous Media

, Volume 112, Issue 3, pp 577–607 | Cite as

Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics

  • R. T. Armstrong
  • S. Berg
  • O. Dinariev
  • N. EvseevEmail author
  • D. Klemin
  • D. Koroteev
  • S. Safonov
Article

Abstract

Predictive modeling of pore-scale multiphase flow is a powerful instrument that enhances understanding of recovery potential of subsurface formations. To endow a pore-scale modeling tool with predictive capabilities, one needs to be sure that this tool is capable, in the first place, of reproducing basic phenomena inherent in multiphase processes. In this paper, we overview numerical simulations performed by means of density functional hydrodynamics of several important multiphase flow mechanisms. In one of the reviewed cases, snap-off in free fluid, we demonstrate one-to-one comparison between numerical simulation and experiment. In another case, geometry-constrained snap-off, we show consistency of our modeling with theoretical criterion. In other more complex cases such as flow in pore doublets and simple system of pores, we demonstrate consistency of our modeling with published data and with existing understanding of the processes in question.

Keywords

Pore scale Two-phase flow Density functional hydrodynamics 

Notes

Acknowledgments

We thank Shell and Schlumberger for permission to publish this paper. We are grateful to George Stegemeier for fruitful discussions and attention to this work. Special thanks to Cor van Kruijsdijk, Paul Hammond, and Dimitri Pissarenko who carefully read our paper and made valuable suggestions. We also thank the reviewers for their attention to our work and for the constructive and helpful comments on the revision of this paper.

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)CrossRefGoogle Scholar
  2. Armstrong, R.T., Evseev, N., Koroteev, D., Berg, S.: Interfacial velocities and the resulting velocity field during a Haines jump. In: International Symposium of the Society of Core Analysts, Avignon, France, September 8–12, 2014, SCA2014-029Google Scholar
  3. Armstrong, R.T., Ott, H., Georgiadis, A., Rucker, M., Schwing, A., Berg, S.: Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour. Res. 50(12), 9162–9176 (2014)CrossRefGoogle Scholar
  4. Armstrong, R.T., Evseev, N., Koroteev, D., Berg, S.: Modeling the velocity field during Haines jumps in porous media. Adv. Water Resour. 77, 57–68 (2015)CrossRefGoogle Scholar
  5. Barral, J.L., Hansen, J.-P.: Basic Concepts for Simple and Complex Liquids. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  6. Beresnev, I.A., Li, W., Vigil, R.D.: Condition for break-up of non-wetting fluids in sinusoidally constricted capillary channels. Transp. Porous Med. 80, 581–604 (2009)CrossRefGoogle Scholar
  7. Beresnev, I.A., Deng, W.: Theory of breakup of core fluids surrounded by a wetting annulus in sinusoidally constricted capillary channels. Phys. Fluids 22, 012105 (2010)CrossRefGoogle Scholar
  8. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)CrossRefGoogle Scholar
  9. Chatzis, I., Dullien, F.A.L.: Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J. Colloid Interface Sci. 91(1), 199–222 (1983)CrossRefGoogle Scholar
  10. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)Google Scholar
  11. Cramer, C.: Continuous drop formation at a capillary tip and drop deformation in a flow channel. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (2004)Google Scholar
  12. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)Google Scholar
  13. Demyanov, A.Y., Dinariev, O.Y.: Modeling of multicomponent multiphase mixture flows on the basis of the density functional method. Fluid Dyn. 39(6), 933–944 (2004a)CrossRefGoogle Scholar
  14. Demyanov, A.Y., Dinariev, O.Y.: Application of the density-functional method for numerical simulation of flows of multispecies multiphase mixtures. J. Appl. Mech. Tech. Phys. 45(5), 670–678 (2004b)CrossRefGoogle Scholar
  15. Dinariev, O.Y., Evseev, N.V.: Description of the flows of two-phase mixtures with phase transitions in capillaries by the density-functional method. J. Eng. Phys. Thermophys. 78(3), 474–481 (2005)CrossRefGoogle Scholar
  16. Demianov, A., Dinariev, O., Evseev, N.: Density functional modeling in multiphase compositional hydrodynamics. Can. J. Chem. Eng. 89, 206–226 (2011)CrossRefGoogle Scholar
  17. Demianov, A., Dinariev, O., Evseev, N.: Introduction to the Density Functional Method in Hydrodynamics. Fizmatlit, Moscow (2014)Google Scholar
  18. Dinariev, O.: A hydrodynamic description of a multicomponent multiphase mixture in narrow pores and thin layers. J. Appl. Math. Mech. 59(5), 745–752 (1995)CrossRefGoogle Scholar
  19. Dinariev, O.: Thermal effects in the description of a multicomponent mixture using the density functional method. J. Appl. Math. Mech. 62(3), 397–405 (1998)CrossRefGoogle Scholar
  20. DiCarlo, D.A., Cidoncha, J.I.G., Hickey, C.: Acoustic measurements of pore-scale displacements. Geophys. Res. Lett. 30(17), 1901 (2003)CrossRefGoogle Scholar
  21. Emmerich, H.: The Diffuse Interface Approach in Material Science. Thermodynamic Concepts and Applications of Phase-Field Models. Springer, Berlin (2003)Google Scholar
  22. Evans, R.: The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28(2), 143–200 (1979)CrossRefGoogle Scholar
  23. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)CrossRefGoogle Scholar
  24. Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)CrossRefGoogle Scholar
  25. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs, NJ (1963)Google Scholar
  26. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans Conn. Acad. 3(108–248), 343–534 (1876)Google Scholar
  27. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Elsevier, New York (2006)Google Scholar
  28. Harrowell, P.R., Oxtoby, D.W.: On the interaction between order and a moving interface: dynamical disordering and anisotropic growth rates. J. Chem. Phys. 86(3), 2932–2942 (1987)CrossRefGoogle Scholar
  29. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), 864–871 (1964)CrossRefGoogle Scholar
  30. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)CrossRefGoogle Scholar
  31. Jakobsen, H.A.: Chemical Reactor Modelling. Springer, Berlin (2008)Google Scholar
  32. Joekar-Niasar, V., van Dijke, M.I.J., Hassanizadeh, S.M.: Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transp. Porous Med. 94, 461–464 (2012)CrossRefGoogle Scholar
  33. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)Google Scholar
  34. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2001)CrossRefGoogle Scholar
  35. Kohn, W.: Nobel lecture: electronic structure of matter-wave functions and density functional. Rev. Mod. Phys. 71(5), 1253–1266 (1999)CrossRefGoogle Scholar
  36. Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Myers, M., Hathon, L., de Jong, H.: Application of Digital Rock Technology for Chemical EOR Screening. SPE-165258 (2013)Google Scholar
  37. Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Nadeev, A., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Armstrong, R., Myers, M.T., Hathon, L., de Jong, H.: Direct hydrodynamic simulation of multiphase flow in porous rock. Petrophysics 55(4), 294–303 (2014)Google Scholar
  38. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluids si l’on tient compte des forces capillaires causées par les variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. Sci. Exactes Nat. 6, 1–24 (1901) (in French)Google Scholar
  39. Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall Inc, Englewood Cliffs (1989)Google Scholar
  40. Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337–353 (1983)CrossRefGoogle Scholar
  41. Lenormand, R.: Liquids in porous media. J. Phys. Condens. Matter 2, SA79–SA88 (1990)CrossRefGoogle Scholar
  42. Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)CrossRefGoogle Scholar
  43. Moebius, F., Or, D.: Inertial forces affect fluid front displacement dynamics in a pore-throat network model. Phys. Rev. E 90, 023019 (2014)CrossRefGoogle Scholar
  44. Mohanty, K.K., Davis, H.T., Scriven, L.E.: Physics of oil entrapment in water-wet rock. SPE Reserv. Eval. Eng. 2(1), 113–128 (1987)CrossRefGoogle Scholar
  45. Moore, T.F., Slobod, R.L.: The effect of viscosity and capillarity on the displacement of oil by water. Prod. Mon. 20(10), 20–30 (1956)Google Scholar
  46. Ono, S., Kondo, S.: Molecular Theory of Surface Tension. Springer, Berlin (1960)Google Scholar
  47. Onuki, A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2004)Google Scholar
  48. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)Google Scholar
  49. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)Google Scholar
  50. Roof, J.R.: Snap-off of oil droplets in water-wet pores. SPE J. 10(1), 85–90 (1970)CrossRefGoogle Scholar
  51. Sedov, L.I.: Mechanics of Continuous Media, vol. 1. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  52. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)Google Scholar
  53. Thoroddsen, S.T., Etoh, T.G., Takehara, K.: Experiments on bubble pinch-off. Phys. Fluids 19, 042101 (2007)CrossRefGoogle Scholar
  54. Unsal, E.: Impact of Wetting Film Flow in Pore Scale Displacement. SCA 2013–016 (2013)Google Scholar
  55. Versteeg, H.K., Malalasekera, W.: An introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Scientific & Technical, New York (1995)Google Scholar
  56. van der Waals, J.D.: Thermodynamische Theorie der Kapillarität unter voraussetzung stetiger Dichteänderung. Z. Phys. Chem. Leipzig 13, 657–725 (1894) (In German)Google Scholar
  57. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Plenum Press, New York (1974)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • R. T. Armstrong
    • 3
  • S. Berg
    • 1
  • O. Dinariev
    • 2
  • N. Evseev
    • 2
    Email author
  • D. Klemin
    • 2
  • D. Koroteev
    • 2
  • S. Safonov
    • 2
  1. 1.Shell Global Solutions International BVRijswijkThe Netherlands
  2. 2.Schlumberger Moscow ResearchMoscowRussia
  3. 3.School of Petroleum EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations