# Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics

- 500 Downloads
- 14 Citations

## Abstract

Predictive modeling of pore-scale multiphase flow is a powerful instrument that enhances understanding of recovery potential of subsurface formations. To endow a pore-scale modeling tool with predictive capabilities, one needs to be sure that this tool is capable, in the first place, of reproducing basic phenomena inherent in multiphase processes. In this paper, we overview numerical simulations performed by means of density functional hydrodynamics of several important multiphase flow mechanisms. In one of the reviewed cases, snap-off in free fluid, we demonstrate one-to-one comparison between numerical simulation and experiment. In another case, geometry-constrained snap-off, we show consistency of our modeling with theoretical criterion. In other more complex cases such as flow in pore doublets and simple system of pores, we demonstrate consistency of our modeling with published data and with existing understanding of the processes in question.

## Keywords

Pore scale Two-phase flow Density functional hydrodynamics## Notes

### Acknowledgments

We thank Shell and Schlumberger for permission to publish this paper. We are grateful to George Stegemeier for fruitful discussions and attention to this work. Special thanks to Cor van Kruijsdijk, Paul Hammond, and Dimitri Pissarenko who carefully read our paper and made valuable suggestions. We also thank the reviewers for their attention to our work and for the constructive and helpful comments on the revision of this paper.

## References

- Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech.
**30**, 139–165 (1998)CrossRefGoogle Scholar - Armstrong, R.T., Evseev, N., Koroteev, D., Berg, S.: Interfacial velocities and the resulting velocity field during a Haines jump. In: International Symposium of the Society of Core Analysts, Avignon, France, September 8–12, 2014, SCA2014-029Google Scholar
- Armstrong, R.T., Ott, H., Georgiadis, A., Rucker, M., Schwing, A., Berg, S.: Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour. Res.
**50**(12), 9162–9176 (2014)CrossRefGoogle Scholar - Armstrong, R.T., Evseev, N., Koroteev, D., Berg, S.: Modeling the velocity field during Haines jumps in porous media. Adv. Water Resour.
**77**, 57–68 (2015)CrossRefGoogle Scholar - Barral, J.L., Hansen, J.-P.: Basic Concepts for Simple and Complex Liquids. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
- Beresnev, I.A., Li, W., Vigil, R.D.: Condition for break-up of non-wetting fluids in sinusoidally constricted capillary channels. Transp. Porous Med.
**80**, 581–604 (2009)CrossRefGoogle Scholar - Beresnev, I.A., Deng, W.: Theory of breakup of core fluids surrounded by a wetting annulus in sinusoidally constricted capillary channels. Phys. Fluids
**22**, 012105 (2010)CrossRefGoogle Scholar - Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour.
**51**, 197–216 (2013)CrossRefGoogle Scholar - Chatzis, I., Dullien, F.A.L.: Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J. Colloid Interface Sci.
**91**(1), 199–222 (1983)CrossRefGoogle Scholar - Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)Google Scholar
- Cramer, C.: Continuous drop formation at a capillary tip and drop deformation in a flow channel. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (2004)Google Scholar
- de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)Google Scholar
- Demyanov, A.Y., Dinariev, O.Y.: Modeling of multicomponent multiphase mixture flows on the basis of the density functional method. Fluid Dyn.
**39**(6), 933–944 (2004a)CrossRefGoogle Scholar - Demyanov, A.Y., Dinariev, O.Y.: Application of the density-functional method for numerical simulation of flows of multispecies multiphase mixtures. J. Appl. Mech. Tech. Phys.
**45**(5), 670–678 (2004b)CrossRefGoogle Scholar - Dinariev, O.Y., Evseev, N.V.: Description of the flows of two-phase mixtures with phase transitions in capillaries by the density-functional method. J. Eng. Phys. Thermophys.
**78**(3), 474–481 (2005)CrossRefGoogle Scholar - Demianov, A., Dinariev, O., Evseev, N.: Density functional modeling in multiphase compositional hydrodynamics. Can. J. Chem. Eng.
**89**, 206–226 (2011)CrossRefGoogle Scholar - Demianov, A., Dinariev, O., Evseev, N.: Introduction to the Density Functional Method in Hydrodynamics. Fizmatlit, Moscow (2014)Google Scholar
- Dinariev, O.: A hydrodynamic description of a multicomponent multiphase mixture in narrow pores and thin layers. J. Appl. Math. Mech.
**59**(5), 745–752 (1995)CrossRefGoogle Scholar - Dinariev, O.: Thermal effects in the description of a multicomponent mixture using the density functional method. J. Appl. Math. Mech.
**62**(3), 397–405 (1998)CrossRefGoogle Scholar - DiCarlo, D.A., Cidoncha, J.I.G., Hickey, C.: Acoustic measurements of pore-scale displacements. Geophys. Res. Lett.
**30**(17), 1901 (2003)CrossRefGoogle Scholar - Emmerich, H.: The Diffuse Interface Approach in Material Science. Thermodynamic Concepts and Applications of Phase-Field Models. Springer, Berlin (2003)Google Scholar
- Evans, R.: The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys.
**28**(2), 143–200 (1979)CrossRefGoogle Scholar - Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)CrossRefGoogle Scholar
- Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)CrossRefGoogle Scholar
- Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs, NJ (1963)Google Scholar
- Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans Conn. Acad.
**3**(108–248), 343–534 (1876)Google Scholar - Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Elsevier, New York (2006)Google Scholar
- Harrowell, P.R., Oxtoby, D.W.: On the interaction between order and a moving interface: dynamical disordering and anisotropic growth rates. J. Chem. Phys.
**86**(3), 2932–2942 (1987)CrossRefGoogle Scholar - Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev.
**136**(3B), 864–871 (1964)CrossRefGoogle Scholar - Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys.
**49**, 435–479 (1977)CrossRefGoogle Scholar - Jakobsen, H.A.: Chemical Reactor Modelling. Springer, Berlin (2008)Google Scholar
- Joekar-Niasar, V., van Dijke, M.I.J., Hassanizadeh, S.M.: Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transp. Porous Med.
**94**, 461–464 (2012)CrossRefGoogle Scholar - Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys.
**12**(3), 613–661 (2012)Google Scholar - Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2001)CrossRefGoogle Scholar
- Kohn, W.: Nobel lecture: electronic structure of matter-wave functions and density functional. Rev. Mod. Phys.
**71**(5), 1253–1266 (1999)CrossRefGoogle Scholar - Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Myers, M., Hathon, L., de Jong, H.: Application of Digital Rock Technology for Chemical EOR Screening. SPE-165258 (2013)Google Scholar
- Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Nadeev, A., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Armstrong, R., Myers, M.T., Hathon, L., de Jong, H.: Direct hydrodynamic simulation of multiphase flow in porous rock. Petrophysics
**55**(4), 294–303 (2014)Google Scholar - Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluids si l’on tient compte des forces capillaires causées par les variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. Sci. Exactes Nat.
**6**, 1–24 (1901) (**in French**)Google Scholar - Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall Inc, Englewood Cliffs (1989)Google Scholar
- Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech.
**135**, 337–353 (1983)CrossRefGoogle Scholar - Lenormand, R.: Liquids in porous media. J. Phys. Condens. Matter
**2**, SA79–SA88 (1990)CrossRefGoogle Scholar - Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys.
**47**, RG3002 (2009)CrossRefGoogle Scholar - Moebius, F., Or, D.: Inertial forces affect fluid front displacement dynamics in a pore-throat network model. Phys. Rev. E
**90**, 023019 (2014)CrossRefGoogle Scholar - Mohanty, K.K., Davis, H.T., Scriven, L.E.: Physics of oil entrapment in water-wet rock. SPE Reserv. Eval. Eng.
**2**(1), 113–128 (1987)CrossRefGoogle Scholar - Moore, T.F., Slobod, R.L.: The effect of viscosity and capillarity on the displacement of oil by water. Prod. Mon.
**20**(10), 20–30 (1956)Google Scholar - Ono, S., Kondo, S.: Molecular Theory of Surface Tension. Springer, Berlin (1960)Google Scholar
- Onuki, A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2004)Google Scholar
- Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)Google Scholar
- Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)Google Scholar
- Roof, J.R.: Snap-off of oil droplets in water-wet pores. SPE J.
**10**(1), 85–90 (1970)CrossRefGoogle Scholar - Sedov, L.I.: Mechanics of Continuous Media, vol. 1. World Scientific, Singapore (1997)CrossRefGoogle Scholar
- Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)Google Scholar
- Thoroddsen, S.T., Etoh, T.G., Takehara, K.: Experiments on bubble pinch-off. Phys. Fluids
**19**, 042101 (2007)CrossRefGoogle Scholar - Unsal, E.: Impact of Wetting Film Flow in Pore Scale Displacement. SCA 2013–016 (2013)Google Scholar
- Versteeg, H.K., Malalasekera, W.: An introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Scientific & Technical, New York (1995)Google Scholar
- van der Waals, J.D.: Thermodynamische Theorie der Kapillarität unter voraussetzung stetiger Dichteänderung. Z. Phys. Chem. Leipzig
**13**, 657–725 (1894) (**In German**)Google Scholar - Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Plenum Press, New York (1974)Google Scholar