Advertisement

Transport in Porous Media

, Volume 112, Issue 1, pp 265–282 | Cite as

Coupling Effects of Flow Velocity and Ionic Strength on the Clogging of a Saturated Porous Medium

  • Zyed MesticouEmail author
  • Mariem Kacem
  • Philippe Dubujet
Article

Abstract

In this study, both the effects of suspension ionic strength and flow velocity on deposition and the clogging phenomena are investigated. Experimental tests are performed in the case of the silt microparticle transport through a saturated sand column with the presence of repulsive interactions. The specific size of these particles is chosen to ensure the presence of both physicochemical and mechanical retention mechanisms. The injection of particle suspension is conducted for long durations at different ionic strength and flow velocities. The deposition rate and the porous media clogging mainly depend on the ionic strength. An increase in the ionic strength causes an increase in the deposition rate and a reduction of the hydraulic conductivity which leads to the progress of the clogging phenomenon through the porous medium. Experimental analyses show the presence of a clogging front whose spatial distribution and temporal progress depend on the suspension ionic strength. Its velocity advancement is proportional to the ionic strength. Within the validity range of Darcy’s law, the dynamics of deposition and clogging also depend on the flow rate. In particular, the retention of silt microparticles is more important for low flow velocities. The influence of the physicochemical effects on the deposition rate and therefore sand texture clogging is more significant at low flow rates.

Keywords

Saturated porous medium Microparticles Mechanic and physicochemical mechanisms Deposition and clogging phenomenon Ionic strength Flow velocity 

References

  1. Ahfir, N.D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15(4), 659–668 (2007)CrossRefGoogle Scholar
  2. Ahfir, N.D., Benamar, A., Alem, A.,Wang, H.Q.: Transport et cinétique de dépôt des particules en suspension dans un milieu poreux granulaire: étude des mécanismes de rétention des particules. \(18^{\grave{\rm e}{\rm me}}\) Congrés Français de mécanique le 27-31 août 2007, Grenoble (2007)Google Scholar
  3. Alem, A., Elkawafi, A., Ahfir, N., Wang, H.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586 (2013)CrossRefGoogle Scholar
  4. Bergna, H.E., William, O.R.: Colloidal Silica. Fundamentals and Applications (Surfactant Science Series), vol. 131. CRC Press Taylor & Francis Group, Boca Raton (2006)Google Scholar
  5. Blume, T., Weisbrodc, N., Selker, J.S.: On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma 124(1–2), 121–132 (2005)CrossRefGoogle Scholar
  6. Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13), 3012–3024 (2007)CrossRefGoogle Scholar
  7. Bradford, S., Bettahar, M., Simunek, J., Van Genuchten, M.T.: Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone J. 3, 384–394 (2004)CrossRefGoogle Scholar
  8. Brown, D.G., Stencel, J.R., Jaffé, P.R.: Effect of porous media preparation on bacteria transport through laboratory columns. Water Res 36, 105–114 (2002)CrossRefGoogle Scholar
  9. Cerda, C.M.: Mobilization of kaolinite fines in porous media. Colloids Surface 27(1–3), 219–241 (1987)CrossRefGoogle Scholar
  10. Chauveteau, G., Nabzar, L., Coste, J.-P. (1998) Physics and modeling of permeability damage induced by particle deposition. In: SPE Formation Damage Control Conference, 18–19 February 1998. Lafayette, Louisiana: Society of Petroleum EngineersGoogle Scholar
  11. Compére, F., Porel, G., Delay, F.: Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. J. Contam. Hydrol. 49(1–2), 1–21 (2001)CrossRefGoogle Scholar
  12. Corapcioglu, M.Y., Jiang, S.: Colloid facilitated groundwater contaminant transport. Water Resour. Res. 29(7), 2215–2226 (1993)CrossRefGoogle Scholar
  13. Derjaguin, B., Landau, L.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. URSS 14, 633–662 (1941)Google Scholar
  14. Du, Y., Shen, C., Zhang, H., Huang, Y., Huang, Y.: Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transp. Porous Med. 98, 193–208 (2013)CrossRefGoogle Scholar
  15. Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle deposition and aggregation: measurement, modeling, and simulation. Langmuir 26, 16690–16698 (1995)Google Scholar
  16. Elimelech, M., Nagai, M., Ko, C., Ryan, J.: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 34, 2143–2148 (2000)CrossRefGoogle Scholar
  17. Elkawafi, A.G., Wang, H.Q.: Clogging of a saturated porous medium subjected to a flow charged with particles. PhD Thesis, University of LeHavre, France (2010)Google Scholar
  18. Fontes, D.E., MILLS, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)Google Scholar
  19. Foppen, J.W., van Herwerden, M., Schijven, J.: Measuring and modelling straining of escherichia coli in saturated porous media. J. Contam. Hydrol. 93(1–4), 236–254 (2007)Google Scholar
  20. Gregory, J.: Approximate expressions for retarded van der Waals interaction. Colloid Interface Sci. 83, 138–145 (1981)CrossRefGoogle Scholar
  21. Grolimund, D., Borkovec, M.: Release of colloidal particles in natural porous media by monovalent and divalent cations. J. Contam. Hydrol. 87, 155–175 (2006)CrossRefGoogle Scholar
  22. Harmand, B., Rodier, E., Sardin, M., Dodds, J.: Transport and capture of submicron particles in a natural sand: short column experiments and a linear model. Colloids Surf. A Physicochem. Eng. Aspects 107, 233–244 (1996)CrossRefGoogle Scholar
  23. Herzig, P.J., Leclerc, D., Goff, P.L.: Flow of suspensions through porous media. Application to deep filtration. Indus. Eng. Chem. 62(5), 8–35 (1970). doi: 10.1021/ie50725a003 CrossRefGoogle Scholar
  24. Hogg, R., Healy, T., Fuersten, D.: Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62(522), 1638–1651 (1966)CrossRefGoogle Scholar
  25. Jegatheesan, V., Vigneswaram, S.: Transient stage deposition of submicron particles in deep bed filtration under unfavourable conditions. Water Res. 34, 2119–2131 (2000)CrossRefGoogle Scholar
  26. Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, London (1998)CrossRefGoogle Scholar
  27. Khilar, K.C., Fogler, H.S.: The existence of critical salt concentration for particle release. J. Colloid Interface Sci. 101(1), 214–224 (1984)CrossRefGoogle Scholar
  28. Kolawoski, J.E., Matijevic, E.: Particle adhesion and removal in model systems: part I. Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans. 75(1), 65–78 (1979)CrossRefGoogle Scholar
  29. Kretzchmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile surface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)CrossRefGoogle Scholar
  30. Kretzschmar, R., Barmettle, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)CrossRefGoogle Scholar
  31. Lekha, K.: Field instrumentation and monitoring of soil erosion in coir geotextile stabilised slopes-a case study. Geotext. Geomembr. 22(5), 399–413 (2004)Google Scholar
  32. Mcdowell-Boyer, L.M., Hunt, J.R., Itar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 901–1921 (1986)CrossRefGoogle Scholar
  33. McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid sorbed contaminants through soil, Part 1: general principles. Biosyst. Eng. 83(3), 255–273 (2002)CrossRefGoogle Scholar
  34. Mesticou, Z., Kacem, M., Dubujet, P.: Mise en évidence de la vitesse critique dans le transport des micro-particules dans le milieu poreux : Expérience et modélisation. Chambéry (2012)Google Scholar
  35. Mesticou, Z., Kacem, M., Dubujet, P.: Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transp. Porous Media 103(1), 1–24 (2014)CrossRefGoogle Scholar
  36. Moghadasi, J., Muller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 43(3–4), 163–181 (2004)Google Scholar
  37. Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)CrossRefGoogle Scholar
  38. Ochi, J., Vernoux, J.-F.: Permeability decrease in sandstone reservoirs by fluid injection hydrodynamic and chemical effects. J. Hydrol. 208(3–4), 237–248 (1998)CrossRefGoogle Scholar
  39. Redman, J., Walker, S., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004)CrossRefGoogle Scholar
  40. Repentigny, C., Courcelles, B.: A simplified model to predict clogging of reactive barriers. Environ. Geotech. (2014). doi: 10.1680/envgeo.14.00020 Google Scholar
  41. Roy, S.B., Dzombak, D.A.: Colloid release and transport processes in natural and porous media. Colloids Surf. A: Physicochem. Eng. Asp. 107, 245–262 (1996)Google Scholar
  42. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A: Physicochem. Eng. Asp. 107, 1–56 (1996)Google Scholar
  43. Ryan, J.N., Gschwend, P.M.: Effect of solution chemistry on clay colloid release from an iron oxide coated aquifer sand. Environ. Sci. Technol. 28(9), 1717–1726 (1994)CrossRefGoogle Scholar
  44. Saiers, J., Hornberger, G., Liang, L.: First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30(9), 2499–2506 (1994a)CrossRefGoogle Scholar
  45. Saiers, J.E., Hornberger, G.M., Harvey, C.: Colloidal silica transport through structured, heterogeneous porous media. J. Hydrol. 163(3–4), 271–288 (1994b)CrossRefGoogle Scholar
  46. Seghir, A., Benamar, A., Wang, H.: Effects of fine particles on the suffusion of cohesionless soils. Experiments and modeling. Transp. Porous Media 103, 233–247 (2014)CrossRefGoogle Scholar
  47. Sharma, P., Bao, D., Fagerlund, F.: Deposition and mobilization of functionalized multiwall carbon nanotubes in saturated porous media: effect of grain size, flow velocity and solution chemistry. Environ. Earth Sci. (2014). doi: 10.1007/s12665-014-3208-7 Google Scholar
  48. Spielman, L.: Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9, 297–319 (1977)CrossRefGoogle Scholar
  49. Spielman, L.A., Cukor, P.M.: Deposition of non-Brownian particles under colloidal forces. J. Colloid Interface Sci. 43(1), 51–65 (1973)CrossRefGoogle Scholar
  50. Tiraferri, A., Tosco, T., Sethi, A.: Transport and retention of micro particles in packed sand columns at low and intermediate ionic strengths experiments and mathematical modeling. Environ. Earth Sci. 63(4), 847–859 (2011)CrossRefGoogle Scholar
  51. Torkzaban, S., Bradford, S.A., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23, 9652–9660 (2007)CrossRefGoogle Scholar
  52. Tufenkji, N., Redman, J.A., Elimelech, M.: Deposition patterns of microbial particles in laboratory scale column experiments. Environ. Sci. Technol. 37(3), 616–623 (2003)CrossRefGoogle Scholar
  53. Vardoulakis, I.: Fluidization in artesian flow conditions: hydromechanically unstable granular media. Geotechnique 54(3), 165–177 (2004)CrossRefGoogle Scholar
  54. Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company Inc, Amsterdam (1948)Google Scholar
  55. Wang, D., Zhang, W., Hao, X., Zhou, D.: Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ. Sci. Technol. 47(2), 821–828 (2013)CrossRefGoogle Scholar
  56. Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. Surf. Geosci. 331(2), 97–104 (2000)Google Scholar
  57. Wang, Y., Gao, B., Morales, V.L., Tian, Y., Wu, L., Gao, J., Bai, W., Yang, L.: Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. Nanoparticle Res. 14(1095) (2012). doi: 10.1007/s11051-012-1095-y
  58. William, P.J., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)Google Scholar
  59. Xie, X.-L., He, F., Xu, D., Wu, Z.-B.: Hydrodynamic aspects of particle clogging in the simulated vertical flow constructed wetland using river sands as substrate. Fresenius Environ. Bull. 19(11), 2567–2575 (2010)Google Scholar
  60. Zhou, D., Wang, D., Cang, L., Hao, X., Chu, L.: Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. Soils Sediments 11, 491–503 (2011)CrossRefGoogle Scholar
  61. Zhou, J., Zheng, X., Flury, M., Lin, G.: Permeability changes during remediation of an aquifer affected by sea-water intrusion: A laboratory column study. J. Hydrol. 376, 557–566 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Ecole Nationale d’Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes UMR 5513Université de LyonSaint EtienneFrance

Personalised recommendations