Transport in Porous Media

, Volume 112, Issue 1, pp 253–264 | Cite as

Offset Rotating Plates Bounding a Fluid-Saturated Porous Medium in a Uniformly Rotating System

  • Patrick D. WeidmanEmail author


The steady flow induced between two offset plates rotating at angular velocity \(\Omega \) bounding a fluid-saturated porous medium in a system uniformly rotating at angular velocity \(\omega \) is studied. The problem is governed by a Reynolds number R, a porosity parameter \(\gamma \), and \(\sigma = \omega /\Omega \) representing the ratio of Coriolis to inertial forces. Details of the loci of centers of rotation projected onto the mid-plane are found, and sample similarity profiles covering a range of parameters are given in graphical form. A formula is derived to compute spiral angles as a function of \(R,\gamma \) and \(\sigma \).


Offset plate rotation Porous medium Brinkman equation Rotating frame of reference 


  1. Abbot, T.N.G., Walters, K.: Rheometrical flow systems. Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier–Stokes equations. J. Fluid Mech. 40, 205–213 (1970)CrossRefGoogle Scholar
  2. Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. VIII/2, pp. 1–384. Springer, Berlin (1963)Google Scholar
  3. Berker, R.: An exact solution of the Navier–Stokes equation. The vortex with curvilinear axis. Int. J. Eng. Sci. 20, 217–230 (1982)CrossRefGoogle Scholar
  4. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)CrossRefGoogle Scholar
  5. Coirier, J.: Rotations non coaxiales d’un disque et d’un fluide à l’infini. J. Mécanique 11, 317–340 (1972)Google Scholar
  6. Das, S., Sarkar, B.C., Jana, R.N.: Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes embedded in a porous medium. Int. J. Comput. Appl. 84, 10–16 (2013)Google Scholar
  7. Erdogan, M.E.: Flow due to eccentrically rotating a porous disk and a fluid at infinity. J. Appl. Mech. 43, 203–204 (1976)CrossRefGoogle Scholar
  8. Ersoy, H.V.: An approximate solution for flow between two disks rotating about distinct axes at different speeds. Math. Probl. Eng. (2007). doi: 10.1155/2007/36718
  9. Jana, R., Maji, M., Das, S., Maji, S.L., Ghosh, S.K.: Hydrodynamic flow between two non-coincident rotating disks embedded in porous media. World J. Mech. 1, 50–56 (2011)CrossRefGoogle Scholar
  10. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1992)Google Scholar
  11. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)Google Scholar
  12. Parter, S.V., Rajagopal, K.R.: Swirling flow between rotating plates. Arch. Ration. Mech. Anal. 86, 305–315 (1984)CrossRefGoogle Scholar
  13. Tamayol, A., Bahrami, M.: Analytical determination of viscous permeability of fibrous porous media. Int. J. Heat Mass Transf. 52, 2407–2414 (2009)CrossRefGoogle Scholar
  14. Weidman, P.D.: Offset rotating plates in a uniformly rotating fluid. Acta Mech. 226, 1123–1131 (2015a)CrossRefGoogle Scholar
  15. Weidman, P.D.: Erratum to: Offset rotating plates in a uniformly rotating fluid. Acta Mech. 226, 3563–3564 (2015b)CrossRefGoogle Scholar
  16. Zhdanov, V.G., Starov, V.M.: Calculation of the effective properties of porous and composite materials. Colloid J. 64, 706–715 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations