Advertisement

Transport in Porous Media

, Volume 112, Issue 1, pp 229–252 | Cite as

Stabilization of Forced Heat Convection: Applications to Enhanced Geothermal Systems (EGS)

  • Murad AbuAishaEmail author
  • Benjamin Loret
Article

Abstract

The natural permeability of geothermal reservoirs is low and needs to be enhanced to ensure an efficient use and economic viability. Next to chemical enhancement, the main technique used for that purpose is hydraulic fracturing. Here, hydraulic fracturing is introduced in a thermo-poroelastic framework. The main addition to this framework is a fracturing model, phrased in terms of Terzaghi’s effective stress that governs the evolution of size and aperture of the fractures in all directions of space. At any geometrical point, a fracture-induced anisotropic permeability tensor is calculated: Next to the injection pressure and thermal shrinking, the directional properties of this tensor are strongly influenced by geological stresses. The fully integrated framework is henceforth used in simulating thermal recovery from enhanced geothermal reservoirs. Evidently, the credibility of the numerical simulations cannot be sufficiently trusted with large spurious wiggles in the temperature field and consequently in those of the effective stresses. This paper provides several approaches to stabilize convection of heat due to extreme injection conditions at early stages, sudden increase in permeability due to hydraulic fracturing, and near the production wells at late injection stages. Emphasis is paid to the subgrid scale/gradient subgrid scale method where the transient problem is placed into a stabilized advection–diffusion–reaction problem.

Keywords

Enhanced geothermal systems (EGS) Thermo-poroelasticity Convection of heat Stabilization methods Thermal recovery hydraulic fracturing Permeability enhancement Injection/production well 

Notes

Acknowledgments

This research was supported by a PhD fellowship of the Centre National de la Recherche Scientifique (CNRS), France.

References

  1. AbuAisha, M.: Enhanced Geothermal Systems: Permeability Stimulation Through Hydraulic Fracturing in a Thermo–Poroelastic Framework. PhD thesis. http://tel.archives-ouvertes.fr/tel-01053612. Université de Grenoble, France (2014)
  2. Atkinson, B.K.: Fracture Mechanics of Rock, 2nd edn. Academic Press Limited, London (1991)Google Scholar
  3. Baumgärtner, J., Jung, R., Gérard, A., Baria, R., Garnish, J.: The European HDR project at Soultz-sous-Forêts: Stimulation of the second deep well and first circulation experiment. In: Proceedings of The 25th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA (1996)Google Scholar
  4. Bruel, D.: Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: application to the Rosemanowes hot dry rock reservoir. Geothermics 24(3), 361–374 (1995a)Google Scholar
  5. Bruel, D.: Modelling heat extraction from forced fluid flow through simulated fractured rock masses: evaluation of the Soultz-sous-Forêts site potential. Geothermics 24(3), 439–450 (1995b)Google Scholar
  6. Evans, K., Valley, B., Häring, M., Hopkirk, R., Baujard, C., Kohl, T., Mégel, T., André, L., Portier, S., Vuataz, F.: Studies and Support for the EGS Reservoirs at Soultz-sous-Forêts, Technical Report, Centre for Geothermal Research—CREGE, CHYN, University of Neuchâtel (2009)Google Scholar
  7. Fries, P.T., Matthies, H.G.: A Review of Petrov–Galerkin Stabilization Approaches and an Extension to Meshfree Methods. In: Informatikbericht Nr. 2004-01. Technische Universitaet Braunschweig, Braunschweig, Germany (2004)Google Scholar
  8. Gelet, R., Loret, B., Khalili. N.: A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. J. Geophys. Res. Solid. Earth (2012a). doi: 10.1029/2012JB00916
  9. Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock. Mech. Min. 50, 65–76 (2012b)Google Scholar
  10. Gelet, R., Loret, B., Khalili, N.: Thermal recovery from a fractured medium in local thermal non-equilibrium. Int. J. Numer. Anal. Methods. 37(15), 2471–2501 (2012c)Google Scholar
  11. Harari, I.: Stability of semidiscrete formulations for parabolic problems at small time steps. Comput. Methods Appl. Mech. 193, 1491–1516 (2004)CrossRefGoogle Scholar
  12. Hauke, G., Sangalli, G., Doweidar, M.: Combining adjoint stabilized methods for the advection–diffusion–reaction problem. Math. Mod. Methods Appl. Sci. 17(2), 305–326 (2007)CrossRefGoogle Scholar
  13. Hughes, T.J.R.: The Finite Element Method; Linear Static and Dynamic Finite Element Analysis, 2nd edn. Dover, Mineola (2000)Google Scholar
  14. Hughes, T.J.R., Brooks, N.A.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. 32(13), 199–259 (1982)Google Scholar
  15. Hughes, J.R.T., Franca, P.L., Hulbert, M.G.: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. 73(2), 173–189 (1989)CrossRefGoogle Scholar
  16. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part I—a review. Comput. Methods Appl. Mech. 196(1720), 2197–2215 (2007)CrossRefGoogle Scholar
  17. Jupe, A.J., Bruel, D., Hicks, T., Hopkirk, R., Kappelmeyer, O., Kohl, T., Kolditz, O., Rodrigues, N., Smolka, K., Willis-Richards, J., Wallroth, T., Xu, S.: Modelling of a European prototype HDR reservoir. Geothermics 24(3), 403–419 (1995)CrossRefGoogle Scholar
  18. McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91, 9533–9542 (1986)CrossRefGoogle Scholar
  19. Shao, J.F., Zhou, H., Chau, K.T.: Coupling between anisotropic damage and permeability variation in brittle rocks. Int. J. Numer. Anal. Methods 29, 1231–1247 (2005)CrossRefGoogle Scholar
  20. Tezduyar, T.E., Park, Y.J.: Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput. Methods Appl. Mech. 59(3), 307–325 (1986)CrossRefGoogle Scholar
  21. Turcotte, D.L., Schubert, G.: Geodynamics, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  22. Yin, S., Dusseault, M.B., Rothenburg, L.: Thermal reservoir modeling of petroleum geomechanics. Int. J. Numer. Anal. Methods 33, 449–485 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada
  2. 2.Université de GrenobleGrenoble CedexFrance

Personalised recommendations