Skip to main content
Log in

An Experimental Study on the Slippage Effect of Gas Flow in a Compact Rock

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Gas flow in small pore throats in compact rocks is usually affected by the gas slippage effect due to the dense structure and low porosity of the rocks. In this study, permeability and porosity of two granitic gneiss specimens under different pore and confining pressures are measured. Petrographic studies are also performed using X-ray diffraction, optical microscopy, and scanning electron microscopy coupled with an energy-dispersive spectrometer. Test data indicate that the gas flow in the compact rock does not follow Darcy’s law due to the effect of gas slippage, and the measured permeability needs to be corrected by the gas slippage effect. The test results show that the gas slippage effect increases subsequently when the pore pressure is low, which leads to the measured permeability higher than the absolute permeability. The influence of confining pressure on the impact rate of the slippage effect appears to approach an upper limit symptomatically. It is found that a power law describes well the relationship between the absolute permeability and the effective porosity. A correlation of the slippage factor and the absolute permeability is provided. When the confining pressure is high and the pore pressure is low, the flows are slip flow and transitional flow and traditional fluid dynamics N–S equations are not applicable and Knudsen’s diffusion equations should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agarwal, R.K., Keon-Young, Y., Balakrishnan, R.: Beyond Navier–Stokes: Burnett equations for flows in the continuum–transition regime. Phys. Fluids 13, 3061–3085 (2001)

    Article  Google Scholar 

  • Baehr, A.L., Hult, M.F.: Evaluation of unsaturated zone air permeability through pneumatic tests. Water Resour. Res. 27(10), 2605–2617 (1991)

    Article  Google Scholar 

  • Beskok, A., Karniadakis, G.E.: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  • Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. In: Bird, G.A. (ed.) Oxford Engineering Science Series. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Boulin, P.F., Bretonnier, P., Glandand, N., Lombard, J.M.: Contribution of the steady-state method to water permeability measurement in very low permeability porous media. Oil Gas Sci. Technol. 67, 387–401 (2012)

    Article  Google Scholar 

  • Brace, W.F., Walsh, J.B., Frangos, W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)

    Article  Google Scholar 

  • Croise’, J., Schlickenrieder, L., Marschall, P., Boisson, J., Vogel, P., Yamamoto, S.: Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Phys. Chem. Earth 29, 3–15 (2004)

    Article  Google Scholar 

  • Cosenza, P., Ghoreychi, M.: Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int. J. Rock Mech. Min. 36(4), 527–533 (1999)

    Article  Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82, 375–384 (2010)

    Article  Google Scholar 

  • Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Soc. Petrophys. Well Log Anal. 43(6), 457–476 (2002)

    Google Scholar 

  • David, C., Wong, T.F., Zhu, W., Zhang, J.: Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425–456 (1994)

    Article  Google Scholar 

  • Davy, C.A., Skoczylas, F., Barnichon, J.D., Lebon, P.: Permeability of macro-cracked argillite under confinement: gas and water testing. Phys. Chem. Earth 32, 667–680 (2007)

    Article  Google Scholar 

  • Florence, F.A., Rushing, J.A., Newsham, K.E., Blasingame, T.A.: Improved permeability prediction relations for low permeability sands. In: Rocky Mountain Oil & Gas Technology Symposium, pp. 1–18. Denver, Colorado, U.S.A. 16–18 April (2007)

  • Heid, J.G., McMahon, J.J., Nielsen, R.F., Yuster, S.T.: Study of the permeability of rocks to homogenous fluids. Drilling and Production Practice, pp. 230–246. American Petroleum Institute, New York (1950)

  • Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Petrol. Technol. 46(10), 55–61 (2007)

    Google Scholar 

  • Jones, F.O., Owens, W.W.: A laboratory study of low permeability gas sands. J. Petrol. Technol. 32(09), 1631–1640 (1980)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. API Drill. Prod. Pract. pp. 200–213. American Petroleum Institute, New York (1941)

  • Knudsen, M.: Die Gesetze der Molukularstrommung und der inneren. Reibungsstrornung der Gase durch Rohren. Ann. Phys. 28, 75–130 (1909)

    Article  Google Scholar 

  • Lilley, C.R., Sader, J.E.: Velocity profile in the Knudsen layer according to the Boltzmann equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 464(2096), pp. 2015–2035. The Royal Society (2008)

  • Loosveldt, H., Lafhaj, Z., Skoczylas, F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32, 1357–1363 (2002)

    Article  Google Scholar 

  • Ma, J.S., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.Y.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498–508 (2014)

    Article  Google Scholar 

  • Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1867)

    Article  Google Scholar 

  • Reda, D.C.: Slip-flow experiments in welded tuff: the Knudson diffusion problem. In: Chin-Fu, Tsang (ed.) Coupled Processes Associated with Nuclear Waste Repositories, pp. 485–493. Academic Press INC, London (1987)

    Chapter  Google Scholar 

  • Sampath, K., Keighin, C.: Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta basin. J. Petrol. Technol. 34(11), 2715–2720 (1982)

    Google Scholar 

  • Schaaf, S.A., Chambre, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)

    Google Scholar 

  • Skoczylas, F., Henry, J.P.: A study of the intrinsic permeability of granite to gas. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(2), 171–179 (1995)

    Article  Google Scholar 

  • Tsang, C.F., Bernierb, F., Davies, C.: Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal. Int. J. Rock Mech. Min. Sci. 42, 109–125 (2005)

    Article  Google Scholar 

  • Walder, J., Nur, A.: Porosity reduction and crustal pore pressure development. J. Geophys. Res. 89, 11539–11548 (1984)

    Article  Google Scholar 

  • Wang, H.L., Xu, W.Y., Shao, J.F., Skoczylas, F.: The gas permeability properties of low-permeability rock in the process of triaxial compression test. Mater. Lett. 116(1), 386–388 (2014a)

  • Wang, H.L., Xu, W.Y., Shao, J.F.: Experimental researches on hydro-mechanical properties of altered rock under confining pressures. Rock Mech. Rock Eng. 47, 485–493 (2014b)

  • Wang, H.L., Xu, W.Y., Zuo, J.: Compact rock material gas permeability properties. Physica B: Condensed Matter. 449(9), 10–18 (2014c)

  • Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32, 117–137 (1998)

    Article  Google Scholar 

  • Xie, S.Y., Shao, J.F.: Elastoplastic deformation of a porous rock and water interaction. Int. J. Plast. 22, 2195–2225 (2006)

    Article  Google Scholar 

  • Ziarani, A.S., Aguilera, R.: Knudsen’s permeability correction for tight porous media. Transp. Porous Med. 91, 239–260 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from China scholarship, Qing Lan Project, the Natural Science Foundation of China (Grant Nos. 11172090, 11272113, 51479049), and the Natural Science Foundation of Jiangsu Province (Grant No. BK2012809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Wang.

Appendix

Appendix

See Tables 6, 7, 8, and 9.

Table 6 Impact rates of gas slippage effect for specimen QDC-5
Table 7 Impact rates of gas slippage effect for specimen QDC-6
Table 8 Knudsen numbers \((K_{n})\) for specimen QDC-5
Table 9 Knudsen numbers \((K_{n})\) for specimen QDC-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.L., Xu, W.Y., Cai, M. et al. An Experimental Study on the Slippage Effect of Gas Flow in a Compact Rock. Transp Porous Med 112, 117–137 (2016). https://doi.org/10.1007/s11242-016-0635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0635-9

Keywords

Navigation