Advertisement

Transport in Porous Media

, Volume 111, Issue 3, pp 669–679 | Cite as

Combining Mercury Intrusion and Nuclear Magnetic Resonance Measurements Using Percolation Theory

  • Hugh Daigle
  • Andrew Johnson
Article

Abstract

Nuclear magnetic resonance (NMR) relaxation time distributions are frequently combined with mercury intrusion capillary pressure (MICP) measurements to allow determination of pore or pore throat size distributions directly from the NMR data. The combination of these two measurements offers an advantage over high-resolution imaging techniques in terms of cost and measurement time, and can provide estimates of pore sizes for pores below imaging resolution. However, the methods that are typically employed to combine NMR and MICP measurements do not necessarily honor the way in which the two different measurements respond to the size distribution and connectivity of the pore system. We present a method for combining NMR and MICP data that is based on percolation theory and the relationship between bond occupation probability and the probability that a bond is part of a percolating cluster. The method yields results that compare very well with pore sizes measured by high-resolution microtomography, and provides particular improvement in media with broad pore size distributions and large percolation thresholds.

Keywords

Nuclear magnetic resonance Mercury intrusion Percolation theory 

References

  1. Arns, C.: A comparison of pore size distributions derived by NMR and X-ray-CT techniques. Phys. A 339(1–2), 159–165 (2004). doi: 10.1016/j.physa.2004.03.033 CrossRefGoogle Scholar
  2. Bloch, F.: Nuclear induction. Phys. Rev. 70(7/8), 460–474 (1946). doi: 10.1103/PhysRev.70.460 CrossRefGoogle Scholar
  3. Brownstein, K.R., Tarr, C.E.: Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19(6), 2446–2453 (1979). doi: 10.1103/physreva.19.2446 CrossRefGoogle Scholar
  4. Butler, J.P., Reeds, J.A., Dawson, S.V.: Estimating solutions of the first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal. 18(3), 381–397 (1981). doi: 10.1137/0718025 CrossRefGoogle Scholar
  5. Carr, H.Y., Purcell, E.M.: Effects of diffusion in free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954). doi: 10.1103/PhysRev.94.630 CrossRefGoogle Scholar
  6. Chatzis, I., Dullien, F.A.L.: Modelling pore structure by 2-D and 3-D networks with application to sandstones. J. Can. Petrol. Technol. 16(1), 97–108 (1977). doi: 10.2118/77-01-09 Google Scholar
  7. Coates, G., Xiao, L., Prammer, M.G.: NMR Logging Principles and Applications. Halliburton Energy Services, Houston (1999)Google Scholar
  8. Daigle, H., Johnson, A., Thomas, B.: Determining fractal dimension from nuclear magnetic resonance data in rocks with internal magnetic field gradients. Geophysics 79(6), D425–D431 (2014a). doi: 10.1190/GEO2014-0325.1 CrossRefGoogle Scholar
  9. Daigle, H., Thomas, B., Rowe, H., Nieto, M.: Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333. J. Geophys. Res. Solid Earth 119(4), 2631–2650 (2014b). doi: 10.1002/2013JB010784 CrossRefGoogle Scholar
  10. Dullien, F.A.L.: Porous Media Fluid Transport and Pore Structure, 2nd edn. Academic Press, San Diego (1992)Google Scholar
  11. Dullien, F.A.L., Dhawan, G.K.: Bivariate pore-size distributions of some sandstones. J. Colloid Interf. Sci. 52(1), 129–135 (1975). doi: 10.1016/0021-9797(75)90309-4 CrossRefGoogle Scholar
  12. Fisher, M.E., Essam, J.W.: Some cluster size and percolation problems. J. Math. Phys. 2(4), 609–619 (1961). doi: 10.1063/1.1703745 CrossRefGoogle Scholar
  13. Fleury, M., Santerre, Y., Vincent, B.: Carbonate rock typing from NMR relaxation measurements. In: Transactions of the \(48^{{\rm th}}\) Annual Logging Symposium SPWLA, paper EEE (2007)Google Scholar
  14. Foley, I., Farooqui, S.A., Kleinberg, R.L.: Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces. J. Magn. Reson. Ser. A 123(1), 95–104 (1996). doi: 10.1006/jmra.1996.0218 CrossRefGoogle Scholar
  15. Gallegos, D.P., Smith, D.M.: A NMR technique for the analysis of pore structure: determination of continuous pore size distributions. J. Colloid Interface Sci. 122(1), 143–153 (1988). doi: 10.1016/0021-9797(88)90297-4 CrossRefGoogle Scholar
  16. Hürlimann, M.D., Helmer, K.G., Latour, L.L., Sotak, C.H.: Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity. J. Magn. Reson. Ser. A 111(2), 169–178 (1994). doi: 10.1006/jmra.1994.1243 CrossRefGoogle Scholar
  17. Ingels, J.J.C.: Geometry, paleontology, and petrography of Thornton Reef complex, Silurian of northeastern Illinois. AAPG Bull. 47(3), 405–440 (1963). doi: 10.1306/bc743a53-16be-11d7-8645000102c1865d Google Scholar
  18. Johnson, A.: Investigations of porous media using nuclear magnetic resonance secular relaxation measurements and micro-CT image analysis. MS thesis, University of Texas, Austin, Texas (2015)Google Scholar
  19. Katz, A.J., Thompson, A.H.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. 92(B1), 599–607 (1987). doi: 10.1029/JB092iB01p00599 CrossRefGoogle Scholar
  20. Kleinberg, R.L.: Utility of NMR \(\text{ T }_{2}\) distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter \({\uprho }_{2}\). Magn. Reson. Imaging 14(7/8), 761–767 (1996)CrossRefGoogle Scholar
  21. Kleinberg, R.L., Horsfield, M.A.: Transverse relaxation processes in porous sedimentary rock. J. Magn. Reson. 88(1), 9–19 (1990). doi: 10.1016/0022-2364(90)90104-h Google Scholar
  22. Larson, R.G., Morrow, N.R.: Effects of sample size on capillary pressures in porous media. Powder Technol. 30(2), 123–138 (1981). doi: 10.1016/0032-5910(81)80005-8 CrossRefGoogle Scholar
  23. Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Pt. A 24(7), 593–599 (1999). doi: 10.1016/S1464-1895(99)00085-X
  24. Lindquist, W.B., Lee, S., Oh, W., Venkatarangan, A.B., Shin, H., Prodanović, M.: 3DMA-Rock: A software package for automated analysis of rock pore structure in 3-D computed microtomography images. http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html. Accessed 3 September 2015 (2005)
  25. Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105(B9), 21509–21527 (2000). doi: 10.1029/2000JB900208 CrossRefGoogle Scholar
  26. Liu, H., Zhang, L., Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen sorption measurements—II. Generalisation. Chem. Eng. Sci. 47(17/18), 4393–4404 (1992). doi: 10.1016/0009-2509(92)85117-t CrossRefGoogle Scholar
  27. Liu, H., Zhang, L., Seaton, N.A.: Analysis of sorption hysteresis in mesoporous solids using a pore network model. J. Colloid Interface Sci 156(2), 285–293 (1993). doi: 10.1006/jcis.1993.1113 CrossRefGoogle Scholar
  28. Marschall, D., Gardner, J.S., Mardon, D., Coates, G.R.: Method for correlating NMR relaxometry and mercury injection data. In: Transactions of the 1995 Symposium SCA, paper 9511 (1995)Google Scholar
  29. Mishra, B.K., Sharma, M.M.: Measurement of pore size distributions from capillary pressure curves. AIChE J. 34(4), 684–687 (1988). doi: 10.1002/aic.690340420 CrossRefGoogle Scholar
  30. Øren, P., Bakke, S.: Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Petrol. Sci. Eng. 39(3–4), 177–199 (2003). doi: 10.1016/S0920-4105(03)00062-7 CrossRefGoogle Scholar
  31. Purcell, W.R.: Capillary pressures—their measurement using mercury and the calculation of permeability therefrom. J. Petrol. Technol. 1(2), 39–48 (1949). doi: 10.2118/949039-g CrossRefGoogle Scholar
  32. Sahimi, M.: Applications of Percolation Theory. Taylor and Francis, Bristol, PA (1993)Google Scholar
  33. Swanson, B.F.: Visualizing pores and nonwetting phase in porous rock. J. Petrol. Technol. 31(1), 10–18 (1979). doi: 10.2118/6857-PA CrossRefGoogle Scholar
  34. Talabi, O., AlSayari, S., Iglauer, S., Blunt, M.J.: Pore-scale simulation of NMR response. J. Petrol. Sci. Eng. 67(3–4), 168–178 (2009). doi: 10.1016/j.petrol.2009.05.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Petroleum and Geosystems EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations