Skip to main content
Log in

Application of Inverse Method to Estimation of Gas Adsorption Isotherms

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

As a first step to analyze the inverse kinetic of adsorption, an inverse algorithm is developed to estimate equilibrium adsorption isotherm in a gas storage vessel by using the dynamic transient internal pressure. In the present study, no prior information is need for the functional form of the unknown isotherm equation to solve continuity equation. The conjugate gradient method is employed for optimization procedure. The incremental differential quadrature method as a computationally efficient and accurate numerical tool is applied to solve the corresponding direct, sensitivity and adjoint problems. The accuracy of the presented approach is examined by simulating the exact data of known model. Good accuracy of the obtained results validates the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(A_{ij}^{(\alpha )}\) :

The first-order weighting coefficient \(({\alpha =x,t})\)

\(B_{ij}^{(x)} \) :

The second-order weighting coefficient along the x-axis

D(xt):

Direction of descent (i.e., search direction)

F :

Time gradient of Q (Eq. 8)

G :

Mass flux (Eq. 9)

L :

Length of the vessel

\(N^\mathrm{I}\) :

Number of temporal increment

\(N_x \) :

Number of grid points along the x-direction

\(N_\mathrm{T}\) :

Total number of grid points in the t-direction

\(N_t^I \) :

Number of grid points in the t-direction for the ith time interval

p :

Dimensionless pressure

\(\bar{{p}}\) :

Pressure

\(p_i \) :

Dimensionless initial pressure

\(p_{\mathrm{max}}\) :

Maximum pressure

Q :

Dimensionless adsorption capacity

\(Q_o \) :

Dimensionless initial adsorption capacity

\(r_i \) :

Radius of the vessel

\(R_p \) :

Adsorbent particle radius

t :

Dimensionless time

\(t_\mathrm{f} \) :

Final time of discharge

\(\bar{{t}}\) :

Time

T :

Temperature

\(\bar{{x}}\) :

Axial coordinate variable

x :

Dimensionless axial coordinate

Y :

Desired pressure

\(\alpha _i \) :

Weighting coefficient

\(\beta \) :

Search step size

\(\varepsilon \) :

Convergence criteria

\(\varepsilon _b \) :

Porosity

\(\gamma \) :

Conjugate coefficient

\(\lambda \) :

Lagrange multiplier

\(\mu \) :

Viscosity

\(\bar{{\rho }}_\mathrm{b}\) :

Bulk density

\(\bar{{\rho }}_\mathrm{g} \) :

Gas density

\(\bar{{\rho }}_l \) :

Solid sorbent density

\(\sigma \) :

Coefficient in Darcy equation

\(\sigma _s \) :

Standard deviation of the measurements

\(\upsilon \) :

Superficial velocity

References

  • Alifanov, O.M., Artyukhin, E., Rumyantsev, A.: Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems. Begell House, New York (1995)

  • Alifanov, O.: Solution of an inverse problem of heat conduction by iteration methods. J. Eng. Phys. Thermophys. 26, 471–476 (1974)

    Article  Google Scholar 

  • Bastos-Neto, M., Torres, A.E.B., Azevedo, D.C., Cavalcante Jr, C.L.: A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11, 147–157 (2005)

    Article  Google Scholar 

  • Beck, J.V., Blackwell, B., Clair, C.R.S.: Inverse heat conduction: Ill-posed problems. Wiley-Interscience, New York (1985)

  • Folly, F., Neto, A.S., Santana, C.: An inverse mass transfer problem for the characterization of simulated moving beds adsorption columns. In: 5th international conference on inverse problems in engineering: theory and practice (2005)

  • Gao, W., Engell, S.: Estimation of general nonlinear adsorption isotherms from chromatograms. Comput. Chem. Eng. 29, 2242–2255 (2005)

    Article  Google Scholar 

  • Golbahar Haghighi, M., Malekzadeh, P., Rahideh, H.: Three-dimensional transient optimal boundary heating of functionally graded plates. Numer. Heat Transf. Part B Fundam. 59, 76–95 (2011)

    Article  Google Scholar 

  • Haghighi, M.G., Eghtesad, M., Malekzadeh, P., Necsulescu, D.: Two-dimensional inverse heat transfer analysis of functionally graded materials in estimating time-dependent surface heat flux. Numer. Heat Transf. Part A Appl. 54, 744–762 (2008)

    Article  Google Scholar 

  • Hahn, T., Sommer, A., Osberghaus, A., Heuveline, V., Hubbuch, J.: Adjoint-based estimation and optimization for column liquid chromatography models. Comput. Chem. Eng. 64, 41–54 (2014)

    Article  Google Scholar 

  • Hashemi, M., Abedini, M., Malekzadeh, P.: Numerical modeling of long waves in shallow water using incremental differential quadrature method. Ocean Eng. 33, 1749–1764 (2006)

    Article  Google Scholar 

  • Khajehpour, S., Hematiyan, M., Marin, L.: A domain decomposition method for the stable analysis of inverse nonlinear transient heat conduction problems. Int. J. Heat Mass Transf. 58, 125–134 (2013)

    Article  Google Scholar 

  • Lugon Jr, J., Silva Neto, A.J., Santana, C.C.: A hybrid approach with artificial neural networks, Levenberg-Marquardt and simulated annealing methods for the solution of gas-liquid adsorption inverse problems. Inverse Probl. Sci. Eng. 17, 85–96 (2009)

    Article  Google Scholar 

  • Malekzadeh, P., Rahideh, H.: IDQ two-dimensional nonlinear transient heat transfer analysis of variable section annular fins. Energy Convers. Manag. 48, 269–276 (2007)

    Article  Google Scholar 

  • Marin, L., Hào, D.N., Lesnic, D.: Conjugate gradient-boundary element method for the Cauchy problem in elasticity. Q. J. Mech. Appl. Math. 55, 227–247 (2002)

    Article  Google Scholar 

  • Marin, L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)

    Article  Google Scholar 

  • Medi, B., Kazi, M.-K., Amanullah, M.: Nonlinear direct inverse method: a shortcut method for simultaneous calibration and isotherm determination. Adsorption 19, 1007–1018 (2013)

    Article  Google Scholar 

  • Mofarahi, M., Gholipour, F.: Gas adsorption separation of \(CO_2\)/CH 4 system using zeolite 5A. Microporous Mesoporous Mater. 200, 1–10 (2014)

    Article  Google Scholar 

  • Mofarahi, M., Seyyedi, M.: Pure and binary adsorption isotherms of nitrogen and oxygen on zeolite 5A. J. Chem. Eng. Data 54, 916–921 (2009)

    Article  Google Scholar 

  • Ozisik, M.N.: Inverse heat transfer: fundamentals and applications. CRC Press, Boca Raton (2000)

    Google Scholar 

  • Sacsa Diaz, R., Sphaier, L.: Development of dimensionless groups for heat and mass transfer in adsorbed gas storage. Int. J. Therm. Sci. 50, 599–607 (2011)

    Article  Google Scholar 

  • Vasconcellos, J.F.V., Silva Neto, A.J., Santana, C.C.: An inverse mass transfer problem in solid-liquid adsorption systems. Inverse Probl. Sci. Eng. 11, 391–408 (2003)

    Article  Google Scholar 

  • Woodbury, K.A.: Inverse engineering handbook. CRC press, Boca Raton (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mofarahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahideh, H., Mofarahi, M., Malekzadeh, P. et al. Application of Inverse Method to Estimation of Gas Adsorption Isotherms. Transp Porous Med 110, 613–626 (2015). https://doi.org/10.1007/s11242-015-0576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0576-8

Keywords

Navigation