Skip to main content
Log in

Pore Network Modeling of Drying Processes in Macroporous Materials: Effects of Gravity, Mass Boundary Layer and Pore Microstructure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We develop a pore network model for the evaporative drying of macroporous media that accounts for the major pore-scale mechanisms experimentally identified to play an important role on the drying rates and phase distribution patterns. The model accounts for viscous flow through liquid films, gravity and mass transfer, both within the dry medium and also through a mass boundary layer over the external surface of the medium. Also accounted are the heterogeneity of the pore size distribution and pore wall microstructure effects expressed through the degree of corner roundness. The latter plays a major role on the extent of the film region. The model is then used to study capillary, gravity and external mass transfer effects through the variation of the appropriate dimensionless numbers. The effect of gravity is particularly analyzed for the two cases, when gravity is opposing and when it is enhancing drying, respectively. In the latter case, strong mass transfer and viscous forces compared to gravity can prevent instability of the receding evaporation front, leading to a two constant-rate-regime drying curve in agreement with the 1-D theory proposed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25(812), 1069–1089 (2002). doi:10.1016/S0309-1708(02)00049-0

    Article  Google Scholar 

  • Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., Yortsos, Y.C.: Invasion percolation in a hydrostatic or permeability gradient: experiments and simulations. Phys. Rev. E 49, 4133–4139 (1994). doi:10.1103/PhysRevE.49.4133

    Article  Google Scholar 

  • Chauvet, F., Duru, P., Prat, M.: Depinning of evaporating liquid films in square capillary tubes: influence of corners’ roundedness. Phys. Fluids 22(11), 112113 (2010). doi:10.1063/1.3503925

    Article  Google Scholar 

  • Chauvet, F., Duru, P., Geoffroy, S., Prat, M.: Three periods of drying of a single square capillary tube. Phys. Rev. Lett. 103, 124502 (2009). doi:10.1103/PhysRevLett.103.124502

    Article  Google Scholar 

  • Dong, M., Chatzis, I.: The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci. 172(2), 278–288 (1995). doi:10.1006/jcis.1995.1253

    Article  Google Scholar 

  • Eijkel, J.C.T., Dan, B., Reemeijer, H.W., Hermes, D.C., Bomer, J.G., van den Berg, A.: Strongly accelerated and humidity-independent drying of nanochannels induced by sharp corners. Phys. Rev. Lett. 95, 256107 (2005). doi:10.1103/PhysRevLett.95.256107

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media 1–3. Pet Trans, Am Inst Min, Metall Pet Eng 207, 144–181 (1956)

  • Faure, P., Coussot, P.: Drying of a model soil. Phys. Rev. E 82, 036303 (2010). doi:10.1103/PhysRevE.82.036303

    Article  Google Scholar 

  • Furuberg, L., Feder, J., Aharony, A., Jøssang, T.: Dynamics of invasion percolation. Phys. Rev. Lett. 61, 2117–2120 (1988). doi:10.1103/PhysRevLett.61.2117

    Article  Google Scholar 

  • Gostick, J.T.: Random pore network modeling of fibrous PEMFC gas diffusion media using Voronoi and Delaunay tessellations. J. Electrochem. Soc. 160(8), 731–743 (2013)

    Article  Google Scholar 

  • Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B 14, 3438–3445 (1976). doi:10.1103/PhysRevB.14.3438

    Article  Google Scholar 

  • Lehmann, P., Assouline, S., Or, D.: Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 77, 056309 (2008). doi:10.1103/PhysRevE.77.056309

    Article  Google Scholar 

  • Prat, M.: Percolation model of drying under isothermal conditions in porous media. Int. J. Multiph. Flow 19(4), 691–704 (1993). doi:10.1016/0301-9322(93)90096-D

    Article  Google Scholar 

  • Prat, M.: Isothermal drying on non-hygroscopic capillary-porous materials as an invasion percolation process. Int. J. Multiph. Flow 21(5), 875–892 (1995). doi:10.1016/0301-9322(95)00022-P

    Article  Google Scholar 

  • Prat, M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Trans. 50(78), 1455–1468 (2007). doi:10.1016/j.ijheatmasstransfer.2006.09.001

    Article  Google Scholar 

  • Prat, M., Bouleux, F.: Drying of capillary porous media with a stabilized front in two dimensions. Phys. Rev. E 60, 5647–5656 (1999). doi:10.1103/PhysRevE.60.5647

    Article  Google Scholar 

  • Ransohoff, T.C., Radke, C.J.: Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121(2), 392–401 (1988). doi:10.1016/0021-9797(88)90442-0

    Article  Google Scholar 

  • Shaw, T.M.: Drying as an immiscible displacement process with fluid counterflow. Phys. Rev. Lett. 59, 1671–1674 (1987). doi:10.1103/PhysRevLett.59.1671

    Article  Google Scholar 

  • Shokri, N., Lehmann, P., Vontobel, P., Or, D.: Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour. Res. 44(6) (2008). doi:10.1029/2007WR006385

  • Suzuki, M., Maeda, S.: On the mechanism of drying of granula beds—mass transfer from discontinuous source. J. Chem. Eng. Jpn 1, 26–31 (1968)

    Article  Google Scholar 

  • Tajer, E.S.: The effects of gravity and thermal gradient on the drying processes in porous media, PhD thesis, University of Southern California (2011)

  • Tsimpanogiannis, I.N., Yortsos, Y.C., Poulou, S., Kanellopoulos, N., Stubos, A.K.: Scaling theory of drying in porous media. Phys. Rev. E 59, 4353–4365 (1999). doi:10.1103/PhysRevE.59.4353

    Article  Google Scholar 

  • van Brakel, J.: Mass transfer in convective drying. Adv. Dry. 1, 217–268 (1980)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). doi:10.1016/j.advwatres.2012.07.018

    Article  Google Scholar 

  • Wilkinson, D.: Percolation model of immiscible displacement in the presence of buoyancy forces. Phys. Rev. A 30, 520–531 (1984). doi:10.1103/PhysRevA.30.520

    Article  Google Scholar 

  • Wong, H., Morris, S., Radke, C.J.: Three-dimensional menisci in polygonal capillaries. J. Colloid Interface Sci. 148, 317–336 (1992). doi:10.1016/0021-9797(92)90171-H

    Article  Google Scholar 

  • Yiotis, A.G., Boudouvis, A.G., Stubos, A.K., Tsimpanogiannis, I.N., Yortsos, Y.C.: Effect of liquid films on the drying of porous media. AIChE J. 50(11), 2721–2737 (2004). doi:10.1002/aic.10265

    Article  Google Scholar 

  • Yiotis, A., Boudouvis, A., Stubos, A., Tsimpanogiannis, I., Yortsos, Y.: Effect of liquid films on the isothermal drying of porous media. Phys. Rev. E 68, 037303 (2003). doi:10.1103/PhysRevE.68.037303

    Article  Google Scholar 

  • Yiotis, A.G., Tsimpanogiannis, I.N., Stubos, A.K., Yortsos, Y.C.: Coupling between external and internal mass transfer during drying of a porous medium. Water Resour. Res. 43 (2007). doi: 10.1029/2006WR005558

  • Yiotis, A.G., Salin, D., Tajer, E.S., Yortsos, Y.C.: Analytical solutions of drying in porous media for gravity-stabilized fronts. Phys. Rev. E 85, 046308 (2012a). doi:10.1103/PhysRevE.85.046308

    Article  Google Scholar 

  • Yiotis, A.G., Salin, D., Tajer, E.S., Yortsos, Y.C.: Drying in porous media with gravity-stabilized fronts: experimental results. Phys. Rev. E 86, 026310 (2012b). doi:10.1103/PhysRevE.86.026310

    Article  Google Scholar 

  • Young, D.M.: Iterative Solution of Large Linear Systems, 1st edn. Academic Press, Orlando, Florida (1971)

    Google Scholar 

Download references

Acknowledgments

The work of AGY was supported by the EU funded grant ENTEC, Contract No. 316173 under the call FP7-REGPOT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Yiotis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiotis, A.G., Salin, D. & Yortsos, Y.C. Pore Network Modeling of Drying Processes in Macroporous Materials: Effects of Gravity, Mass Boundary Layer and Pore Microstructure. Transp Porous Med 110, 175–196 (2015). https://doi.org/10.1007/s11242-015-0529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0529-2

Keywords

Navigation