Skip to main content
Log in

Permeability of Microcracked Solids with Random Crack Networks: Role of Connectivity and Opening Aperture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper investigates the permeability of microcracked porous solids containing 2D random crack networks. The past works on permeability of crack networks are firstly reviewed. The geometry analysis is performed on numerical samples of crack networks with different crack length distributions, crack densities, domain size ratios and clustering degrees. The parameters from continuum percolation theory are used to characterize the geometry of random networks including the percolation threshold, the scaling exponents for percolation probability and correlation length of crack clusters, and the fractal dimension of spanning clusters. The crack density is used as the basic percolation variable, and a new connectivity factor is proposed for the cluster spanning in finite domain. Then the effective permeability of porous matrix containing 2D random crack networks is analyzed on numerical samples via finite element method. A scaling law for effective permeability is established near the percolation threshold taking into account the matrix permeability, crack opening aperture, crack connectivity and tortuosity. The results from geometry analysis and permeability analysis show that: (1) The new connectivity factor is proved pertinent to network percolation, related to both crack density and crack clustering degree; (2) the percolation parameters of uncorrelated crack networks are rather near to the universal values from the continuum percolation theory, but their values change with the clustering degree of crack networks; (3) the numerical results confirm the scaling law proposed for effective permeability, and the permeability is found to scale with the crack opening through a power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler, P.M., Thovert, J.F.: Fracture and Fracture Networks. Kluwer, Dordrecht (1999)

    Book  Google Scholar 

  • Adler, P.M., Thovert, J.F., Mourzenko, V.V.: Fractured Porous Media. Oxford, London (2013)

    Google Scholar 

  • Berkowitz, B.: Analysis of fracture network connectivity using percolation theory. Math. Geol. 27(4), 467–483 (1995)

    Article  Google Scholar 

  • Berkowitz, B., Ewing, R.P.: Percolation theory and network modeling applications in soil physics. Surv. Geophys. 19(1), 23–72 (1998)

    Article  Google Scholar 

  • Berryman, J.G., Hoversten, G.M.: Modelling electrical conductivity for earth media with macroscopic fluid-filled fractures. Geophys. Prospect. 61(2), 471–493 (2012)

    Article  Google Scholar 

  • Bogdanov, I.I., Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Effective permeability of fractured porous media in steady state flow. Water Resour. Res. 39(1), 1023 (2003)

    Google Scholar 

  • Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)

    Article  Google Scholar 

  • Bour, O., Davy, P.: Connectivity of random fault networks following a power law fault length distribution. Water Resour. Res. 33(7), 1567–1583 (1997)

    Article  Google Scholar 

  • Darcel, C., Bour, O., Davy, P., de Dreuzy, J.R.: Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resour. Res. 39(10), 1272 (2003)

    Article  Google Scholar 

  • Davy, P., Sornette, A., Sornette, D.: Some consequences of a proposed fractal nature of continental faulting. Nature 348(6296), 56–58 (1990)

    Article  Google Scholar 

  • de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resour. Res. 37(8), 2065–2078 (2001a)

    Article  Google Scholar 

  • de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 37(8), 2079–2095 (2001b)

    Article  Google Scholar 

  • de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour. Res. 38(12), 1276 (2002)

    Article  Google Scholar 

  • Desbarats, A.J.: Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media. Math. Geol. 24(3), 249–267 (1992)

    Article  Google Scholar 

  • Guéguen, Y., Dienes, J.: Transport properties of rocks from statistics and percolation. Math. Geol. 21(1), 1–13 (1989)

    Article  Google Scholar 

  • Guéguen, Y., Chelidze, T., Le Ravalec, M.: Microstructures, percolation thresholds, and rock physical properties. Tectonophysics 279(1), 23–35 (1997)

    Article  Google Scholar 

  • Halperin, B.I., Feng, S., Sen, P.N.: Differences between lattice and continuum percolation transport exponents. Phys. Rev. Lett. 54(22), 2391 (1985)

    Article  Google Scholar 

  • Hearn, N.: Effect of shrinkage and load-induced cracking on water permeability of concrete. ACI Mater. J. 96, 234–241 (1999)

    Google Scholar 

  • Hestir, K., Long, J.: Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories. J. Geophys. Res. 95(B13), 21565–21581 (1990)

    Article  Google Scholar 

  • Hunt, A., Ewing, R.: Percolation Theory for Flow in Porous Media. Springer, Berlin (2009)

    Google Scholar 

  • Jafari, A., Babadagli, T.: Relationship between percolation-fractal properties and permeability of 2-D fracture networks. Int. J. Rock Mech. Min. Sci. 60, 353–362 (2013)

    Google Scholar 

  • Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 304–335 (1992)

    Article  Google Scholar 

  • Lee, Y., Andrade Jr, J.S., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., King, P.R., Paul, G., Stanley, H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60(3), 3425–3428 (1999)

    Article  Google Scholar 

  • Lespinasse, M., Désindes, L., Fratczak, P., Petrov, V.: Microfissural mapping of natural cracks in rocks: implications for fluid transfers quantification in the crust. Chem. Geol. 223(1–3), 170–178 (2005)

    Article  Google Scholar 

  • Leung, C.T.O., Zimmerman, R.W.: Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties. Transp. Porous Media. 93(3), 777–797 (2012)

    Article  Google Scholar 

  • Li, J.H., Zhang, L.M.: Connectivity of a network of random discontinuities. Comput. Geotech. 38(2), 217–226 (2011)

    Article  Google Scholar 

  • Loosveldt, H., Lafhaj, Z., Skoczylas, F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32(9), 1357–1363 (2002)

    Article  Google Scholar 

  • Mandelbrot, B.B.: The fractal geometry of nature. W. H. Freeman, New York (1983)

    Google Scholar 

  • Masihi, M., King, P.R.: A correlated fracture network: modeling and percolation properties. Water Resour. Res. 43(7), W07439 (2007)

    Article  Google Scholar 

  • Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Macroscopic permeability of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E. 69(6), 066307 (2004)

    Article  Google Scholar 

  • Norris, A.N.: A differential scheme for the effective moduli of composites. Mech. Mater. 4(1), 1–16 (1985)

    Article  Google Scholar 

  • Pan, J.B., Lee, C.C., Lee, C.H., Yeh, H.F., Lin, H.I.: Application of fracture network model with crack permeability tensor on flow and transport in fractured rock. Eng. Geol. 116(1–2), 166–177 (2010)

    Article  Google Scholar 

  • Pouya, A., Ghabezloo, S.: Flow around a crack in a porous matrix and related problems. Transp. Porous Media. 84(2), 511–532 (2010)

    Article  Google Scholar 

  • Robinson, P.C.: Numerical calculations of critical densities for lines and planes. J. Phys. A 17(14), 2823–2830 (1984)

    Article  Google Scholar 

  • Sadeghnejad, S., Masihi, M., King, P.R.: Dependency of percolation critical exponents on the exponent of power law size distribution. Phys. A 392(24), 6189–6197 (2013)

    Article  Google Scholar 

  • Samaha, H.R., Hover, K.C.: Influence of microcracking on the mass transport properties. ACI Mater. J. 89, 416–424 (1992)

    Google Scholar 

  • Shafiro, B., Kachanov, M.: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J. Appl. Phys. 87(12), 8561–8569 (2000)

    Article  Google Scholar 

  • Sheppard, A.P., Knackstedt, M.A., Pinczewski, W.V., Sahimi, M.: Invasion percolation: new algorithms and universality classes. J. Phys. A 32(49), L521–L529 (1999)

    Article  Google Scholar 

  • Somette, D.: Critical transport and failure in continuum crack percolation. J. Phys. 49(8), 1365–1377 (1988)

    Article  Google Scholar 

  • Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54(1), 1–74 (1979)

    Article  Google Scholar 

  • Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (2003)

    Google Scholar 

  • Suzuki, K., Oda, M., Yamazaki, M., Kuwahara, T.: Permeability changes in granite with crack growth during immersion in hot water. Int. J. Rock Mech. Min. Sci. 35(7), 907–921 (1998)

    Article  Google Scholar 

  • Torquato, S.: Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44(2), 37–76 (1991)

    Article  Google Scholar 

  • Wilke, S., Guyon, E., de Marsily, G.: Water penetration through fractured rocks: test of a tridimensional percolation description. J. Int. Assoc. Math. Geol. 17(1), 17–27 (1985)

    Article  Google Scholar 

  • Wong, P., Koplik, J., Tomanic, J.P.: Conductivity and permeability of rocks. Phys. Rev. B 30(11), 6606–6614 (1984)

    Article  Google Scholar 

  • Yazdi, A., Hamzehpour, H., Sahimi, M.: Permeability, porosity, and percolation properties of two-dimensional disordered fracture networks. Phys. Rev. E 84(4), 046317 (2011)

    Article  Google Scholar 

  • Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49(11), 2765–2788 (2001)

    Article  Google Scholar 

  • Zhou, C., Li, K., Pang, X.: Effect of crack density and connectivity on the permeability of microcracked solids. Mech. Mater. 43(12), 969–978 (2011)

    Article  Google Scholar 

  • Zhou, C., Li, K., Pang, X.: Geometry of crack network and its impact on transport properties of concrete. Cem. Concr. Res. 42(9), 1261–1272 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, K. Permeability of Microcracked Solids with Random Crack Networks: Role of Connectivity and Opening Aperture. Transp Porous Med 109, 217–237 (2015). https://doi.org/10.1007/s11242-015-0510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0510-0

Keywords

Navigation