Skip to main content

Advertisement

Log in

\(\mathrm{{CO}}_{2}\) Capture from Gas Mixtures by Alkanol Amine Solutions in Porous Membranes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Simulation of transport phenomena in capture of \(\hbox {CO}_{2}\) from air was carried out in this work. Separation of \(\hbox {CO}_{2}\) as an air pollutant from nitrogen using porous membranes is simulated to optimize the process. Computational fluid dynamics approach is utilized for numerical simulation of process aiming to predict the concentration of \(\hbox {CO}_{2}\) in the membrane module. 2-Amino-2-methyl-1-propanol as chemical absorbent was considered in the simulations. Hydrodynamics and mass transfer of system were investigated by the developed numerical procedure. The simulation results were validated through comparing with experimental data, and good agreement was achieved. The simulation results revealed that \(\hbox {CO}_{2}\) removal rate increases with an enhancement of absorbent flow rate, and decreases with the increasing gas flow rate. This simulation procedure can predict \(\hbox {CO}_{2}\) capture from air using porous membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(C_{0}\) :

Inlet concentration \((\hbox {mol/m}^{3})\)

\(C\) :

Concentration \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{CO_{2}{\text {-}}shell}}\) :

\(\hbox {CO}_{2}\) concentration in the shell \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{CO_{2}{\text {-}}tube}}\) :

\(\hbox {CO}_{2}\) concentration in the tube \((\hbox {mol/m}^{3})\)

\(C_\mathrm{i}\) :

Concentration of any species \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{i{\text {-}}tube}}\) :

Concentration of any species in the tube \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{in}}\) :

Absorbent concentration at the inlet \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{inlet}}\) :

Inlet concentration of \(\hbox {CO}_{2}\) in the shell \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{outlet}}\) :

Outlet concentration of \(\hbox {CO}_{2}\) in the shell \((\hbox {mol/m}^{3})\)

\(C_\mathrm{AMP{\text {-}}tube}\) :

AMP (amine) concentration \((\hbox {mol/m}^{3})\)

\(C_{\mathrm{M0}}\) :

Inlet AMP concentration \((\hbox {mol/m}^{3})\)

\(D\) :

Diffusion coefficient \((\hbox {m}^{2}/\hbox {s})\)

\(D_{\mathrm{i{\text {-}}membrane}}\) :

Diffusion coefficient of any species in the membrane \((\hbox {m}^{2}/\hbox {s})\)

\(D_{\mathrm{i{\text {-}}tube}}\) :

Diffusion coefficient of any species in the tube \((\hbox {m}^{2}/\hbox {s})\)

\(k\) :

Reaction rate coefficient of \(\hbox {CO}_{2}\) with absorbent \((\hbox {m}^{3}/\hbox {mol s})\)

\(L\) :

Length of a fiber (m)

\(m\) :

Partition coefficient (–)

\(n\) :

Number of fibers

\(p\) :

Pressure (Pa)

\(Q_{\mathrm{g}}\) :

Gas flow rate (L/h)

\(Q_{\mathrm{l}}\) :

Liquid flow rate (L/h)

\(r_{1}\) :

Tube inner radius (m)

\(r_{2}\) :

Tube outer radius (m)

\(r_{3}\) :

Inner shell radius (m)

\(r\) :

Radial coordinate (m)

\(\mathfrak {R}\) :

Module inner radius (m)

\(R_{\mathrm{i}}\) :

Overall reaction rate of any species \((\hbox {mol/m}^{3} \hbox {s})\)

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(u\) :

Average velocity (m/s)

\(V\) :

Velocity in the module (m/s)

\(V_{z{\text {-}}\mathrm{shell}}\) :

\(z\)-velocity in the shell (m/s)

\(V_{z{\text {-}}\mathrm{tube}}\) :

\(z\)-velocity in the tube (m/s)

\(z\) :

Axial coordinate (m)

References

  • Asimakopoulou, A.G., Karabelas, A.J.: Mass transfer in liquid–liquid membrane based extraction at small fiber packing fractions. J. Membr. Sci. 271, 151–162 (2006)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (1960)

    Google Scholar 

  • Chun, M.S., Lee, K.H.: Analysis on a hydrophobic hollow fiber membrane absorber and experimental observations of \(\text{ CO }_{2}\) removal by enhanced absorption. Sep. Sci. Technol. 32(15), 2445–2466 (1997)

    Article  Google Scholar 

  • Esato, K., Eiseman, B.: Experimental evaluation of Gore-Tex membrane oxygenator. J. Thorac. Cardiovas. Surg. 69, 690–697 (1975)

    Google Scholar 

  • Feron, P.H.M., Jansen, A.E.: Membrane technology in carbon dioxide removal. Energy Convers. Manag. 23, 421–428 (1992)

    Article  Google Scholar 

  • Feron, P.H.M., Jansen, A.E.: Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry. Energy Convers. Manag. 36, 411–414 (1995)

    Article  Google Scholar 

  • Feron, P.H.M., Jansen, A.E.: The production of carbon dioxide from flue gas by membrane gas absorption. Energy Convers. Manag. 38, S93–S98 (1997)

    Article  Google Scholar 

  • Happel.: Viscous flow relative to arrays of cylinders. AIChE J. 5, 174–177 (1959)

  • Karror, S., Sirkar, K.K.: Gas absorption study in micro porous hollow fiber membrane modules. Ind. Eng. Chem. Res. 32, 674–684 (1993)

    Article  Google Scholar 

  • Kieffer, R., Charcosset, C., Puel, F., Mangin, D.: Numerical simulation of mass transfer in a liquid–liquid membrane contactor for laminar flow conditions. Comput. Chem. Eng. 32, 1325–1333 (2008)

    Article  Google Scholar 

  • Kim, Y., Yang, S.: Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Sep. Purif. Technol 21, 101–109 (2000)

    Article  Google Scholar 

  • Kreulen, H., Versteeg, G.F., Smolders, C.A., Van Swaaij, W.P.M.: Selective removal of \(\text{ H }_{2}\text{ S }\) from sour gas with micro porous membranes Part 1. Application in a gas-liquid system. J. Membr. Sci. 73, 293–304 (1992)

    Article  Google Scholar 

  • Kreulen, H., Smolders, C.A., van Versteeg, G.F., Swaaij, W.P.M.: Micro porous hollow fiber membrane modules as gas-liquid contactors. Part 2. Mass transfer with chemical reaction. J. Membr. Sci. 78, 217 (1993a)

    Article  Google Scholar 

  • Kreulen, H., Smolders, C.A., van Versteeg, G.F., Swaaij, W.P.M.: Micro porous hollow fiber membrane modules as gas–liquid contactors. Part 1. Physical mass transfer processes: a specific application: mass transfer in highly viscous liquids. J. Membr. Sci. 78, 197–216 (1993b)

    Article  Google Scholar 

  • Lee, H.K., Jo, H.D., Choi, W.K., Park, H.H., Lim, C.W., Lee, Y.T.: Absorption of \(\text{ SO }_{2}\) in hollow fiber membrane contactors using various aqueous absorbents. Desalination 200, 604–605 (2006)

    Article  Google Scholar 

  • Li, M.H., Lie, Y.C.: Densities and viscosities of solutions mono ethylamine N-methyldiethanolamine water and mono ethanolamine 2-Amino -2-methyl-1-propanol water. J. Chem. Eng. Data 39, 444 (1994)

    Article  Google Scholar 

  • Li, K., Dongliang, W., Koe, C.C., Teo, W.K.: Use of asymmetric hollow fiber modules for elimination of \(\text{ H }_{2}\text{ S }\) from gas streams via a membrane absorption method. Chem. Eng. Sci. 53, 1111–1119 (1998)

    Article  Google Scholar 

  • Li, K., Kong, J.F., Wang, D., Teo, W.K.: Tailor-made asymmetric PVDF hollow fiber for soluble gas removal. AIChE J. 45, 1211–1219 (1999)

    Article  Google Scholar 

  • Mansourizadeh, A., Ismail, A.F.: Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. J. Hazard. Mater. 171, 38–53 (2009)

    Article  Google Scholar 

  • Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z., Moradi, S.: CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor. Chem. Eng. Process. 72, 130–136 (2013)

    Article  Google Scholar 

  • Nii, S., Takeuchi, H.: Removal \(\text{ CO }_{2}\) and/or \(\text{ SO }_{2}\) from gas streams by a membrane absorption method. Gas Sep. Purif. 8, 107–114 (1994)

    Article  Google Scholar 

  • Nishikawa, N., Ishibashi, M., Ohata, H., Akutsu, N.: \(\text{ CO }_{2}\) removal by hollow fibers gas-liquid contactor. Energy Convers. Manag. 36, 415–418 (1995)

    Article  Google Scholar 

  • Park, H.H., Deshwal, B.R., Kim, I.W., Lee, H.K.: Absorption of \(\text{ SO }_{2}\) from flue gas using PVDF hollow fiber membranes in a gas–liquid contactor. J. Membr. Sci. 319, 29–37 (2008)

    Article  Google Scholar 

  • Poddar, T.K., Majumdar, S., Sirkar, K.K.: Membrane based absorption of VOCs from a gas stream. AIChE J. 42, 3267–3282 (1996)

    Article  Google Scholar 

  • Qi, Z., Cussler, E.L.: Micro porous hollow fibers for gas absorption. Part 1. Mass transfer in the liquid. J. Membr. Sci. 23, 321–332 (1985a)

    Article  Google Scholar 

  • Qi, Z., Cussler, E.L.: Micro-porous hollow fibers for gas absorption. Part 2. Mass transfer across the membrane. J. Membr. Sci. 23, 333–345 (1985b)

    Article  Google Scholar 

  • Rangwala, H.A.: Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 112, 229–240 (1996)

    Article  Google Scholar 

  • Razavi, S.M.R., Shirazian, S., Najafabadi, M.S.: Investigations on the ability of di-isopropanol amine solution for removal of \(\text{ CO }_{2}\) from natural gas in porous polymeric membranes. Polym. Eng. Sci. (2014). doi:10.1002/pen.23924

  • Razavi, S.M.R., Razavi, S.M.J., Miri, T., Shirazian, S.: CFD simulation of \(\text{ CO }_{2}\) capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. Int. J. Greenh. Gas Control 15, 142–149 (2013)

    Article  Google Scholar 

  • Saha, A.K., Bandyopadhyay, S.S.: Kinetics of absorption of \(\text{ CO }_{2}\) into aqueous solutions of 2-amino-2-metyl-1-propanol. Chem. Eng. Sci. 50(22), 3587–3598 (1995)

    Article  Google Scholar 

  • Shirazian, S., Moghadassi, A., Moradi, S.: Numerical simulation of mass transfer in gas–liquid hollow fiber membrane contactors for laminar flow conditions. Simul. Model. Pract. Theory 17, 708–718 (2009)

    Article  Google Scholar 

  • Sohrabi, M.R., Marjani, A., Moradi, S., Davallo, M., Shirazian, S.: Mathematical modeling and numerical simulation of \(\text{ CO }_{2}\) transport through hollow-fiber membranes. Appl. Math. Model. 35, 174–188 (2011)

    Article  Google Scholar 

  • Song, J.H., Park, S.B., Yoon, J.H., Lee, H.: Densities and viscosities of mono ethanolamine + ethylene glycol + water. J. Chem. Eng. Data 41, 1152 (1996)

    Article  Google Scholar 

  • Versteeg, G.F., van Swaaij, W.P.M.: Solubility and diffusivity of acid gases (\(\text{ CO }_{2},\,\text{ N }_{2}\text{ O }\)) in aqueous alkanol amine solutions. J. Chem. Eng. Data 33, 29 (1988)

    Article  Google Scholar 

  • Wang, D., Teo, W.K., Li, K.: Removal of \(\text{ H }_{2}\text{ S }\) to ultra-low concentrations using an asymmetric hollow fiber membrane module. Sep. Purif. Technol. 27, 33–40 (2002)

    Article  Google Scholar 

  • Wang, D., Teo, W.K., Li, K.: Selective removal of traces \(\text{ H }_{2}\text{ S }\) from gas streams containing \(\text{ CO }_{2}\) using hollow fiber modules/contactors. Sep. Purif. Technol. 35, 125–131 (2004)

    Article  Google Scholar 

  • Zaidiza, D.A., Billaud, J., Belaissaoui, B., Rode, S., Roizard, D., Favre, E.: Modeling of \(\text{ CO }_{2}\) post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. J. Membr. Sci. 455, 64–74 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Marjani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, S.M.R., Marjani, A. & Shirazian, S. \(\mathrm{{CO}}_{2}\) Capture from Gas Mixtures by Alkanol Amine Solutions in Porous Membranes. Transp Porous Med 106, 323–338 (2015). https://doi.org/10.1007/s11242-014-0403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0403-7

Keywords

Navigation