Predicting Vertical Flow Barriers Using Tracer Diffusion in Partially Saturated, Layered Porous Media

Abstract

Sudden changes in isotopic tracer concentration in pore waters have been interpreted as indicating barriers to vertical advective flow through porous rocks in the subsurface, e.g. step changes in \(^{87}\hbox {Sr}/^{86}\)Sr ratio are often used in the oil and gas industry as a signature of reservoir compartmentalisation. This study shows that this is not necessarily the case. It can take millions of years for such step changes to equilibrate by diffusion if there is no flow resulting from pressure or density gradients even in high permeability, high porosity rocks, particularly if the water saturation is low. Changes in tracer concentration gradients can be good indicators of changes in porosity (or water saturation) between layers. In contrast changes in sorption without a change in porosity are almost impossible to identify. The time taken for concentration gradients to equilibrate is affected by the layer properties but can be quickly estimated from the harmonic average of the effective diffusion coefficient for each layer and a simple analytical expression for a homogeneous system. This was achieved by performing a sensitivity analysis on different layer properties (porosity contrast, saturation contrast, sorption contrast, thickness ratio) using existing analytical solutions for diffusion in layered systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akiba, D., Hashimoto, H.: Distribution coefficient of strontium on variety of minerals and rocks. J. Nucl. Sci. Technol. 27, 275–279 (1990)

    Article  Google Scholar 

  2. Altmann, S.: ‘Geo’chemical research: a key building block for nuclear waste disposal safety cases. J. Contam. Hydrol. 102, 174–179 (2008)

    Article  Google Scholar 

  3. Anderson, W.G.: Wettability literature survey - part 3: the effects of wettability on the electrical properties of porous media. J. Pet. Tech. 38, 1371–1378 (1986)

    Article  Google Scholar 

  4. Archie, G.E.: The electrical resistivity logs as an aid in determining some reservoir characteristics. Pet. Trans. AIME. 146, 54–62 (1942)

    Article  Google Scholar 

  5. Barnaby, R.J., Oetting, G.C., Gao, G.: Strontium isotopic signatures of oil-field waters: applications for reservoir characterization. AAPG Bull. 88, 1677–1704 (2004)

    Article  Google Scholar 

  6. Bourg, I.C., Bourg, A.C.M., Sposito, G.: Modeling diffusion and adsorption in compacted bentonite: a critical review. J. Contam. Hydrol. 61, 293–302 (2003)

    Article  Google Scholar 

  7. Boving, T.B., Grathwohl, P.: Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J. Contam. Hydrol. 53, 85–100 (2001)

    Article  Google Scholar 

  8. Capo, R.C., Stewart, B.W., Chadwick, O.A.: Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998)

    Article  Google Scholar 

  9. Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Oxford Science Publications, Oxford, England (1959)

    Google Scholar 

  10. Conca, J.L., Wright, J.: Diffusion and flow in gravel soil and whole rock. Hydrogeol. J. 1, 5–24 (1992)

    Article  Google Scholar 

  11. Conrad, M.E., DePaolo, D.J., Maher, K., Gee, G.W., Ward, A.L.: Field evidence for strong chemical separation of contaminants in the Hanford vadose zone. Vadose Zone J. 6, 1031–1041 (2007)

    Article  Google Scholar 

  12. Donaldson, E.C., Siddiqui, T.K.: Relationship between the Archie saturation exponent and wettability. SPE Form. Eval. 4, 359–362 (1989)

    Article  Google Scholar 

  13. England, W.A., Mackenzie, A.S., Mann, D.M., Quigley, T.M.: The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. Lond. 144, 327–347 (1987)

    Article  Google Scholar 

  14. Focke, J.W., Munn, D.: Cementation exponents in middle eastern carbonate reservoirs. SPE Form. Eval. 2, 155–167 (1987)

    Article  Google Scholar 

  15. Frost, C.D., Toner, R.N.: Strontium isotopic identification of water-rock interaction and groundwater mixing. Ground Water. 42, 418–432 (2004)

    Article  Google Scholar 

  16. Go, J., Smalley, P.C., Muggeridge, A.: Appraisal of compartmentalization using fluid mixing time-scales: horn mountain field. Gulf Mex. Pet. GeoSci. 18, 305–314 (2012)

    Article  Google Scholar 

  17. Go, J., Stegemann, J.A.: Modelling post-depositional transport of PAHs in bed-sediments using CoReTranS. J. Soils Sediments 12, 1541–1548 (2012)

    Article  Google Scholar 

  18. Go, J., Lampert, D.J., Stegemann, J.A., Reible, D.D.: Predicting contaminant fate and transport in sediment caps: mathematical modelling approaches. Appl. Geochem. 24, 1347–1353 (2009)

    Article  Google Scholar 

  19. Hamamoto, S., Moldrup, P., Kawamoto, K., Komatsu, T.: Excluded-volume expansion of Archie’s law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media. Water Resour. Res. 46, W06514 (2010)

    Google Scholar 

  20. Han, M., Youssef, S., Rosenberg, E., Fleury, M., Levitz, P.: Deviation from Archie’s law in partially saturated porous media: wetting film versus disconnectedness of the conducting phase. Phys. Rev. E. 79, 031127 (2009)

    Article  Google Scholar 

  21. Holtta, P., Siitari-Kauppi, M., Hakanen, M., Tukiainen, V.: Attempt to model laboratory-scale diffusion and retardation data. J. Contam. Hydrol. 47, 139–148 (2001)

    Article  Google Scholar 

  22. Hu, Q., Wang, J.S.Y.: Aqueous-phase diffusion in unsaturated geologic media: a review. Crit. Rev. Env. Sci. Tec. 33, 275–297 (2003)

    Article  Google Scholar 

  23. Hu, Q.H., Kneafsey, T.J., Roberts, J.J., Tomutsa, L., Wang, J.S.Y.: Characterizing unsaturated diffusion in porous tuff gravel. Vadose Zone J. 3, 1425–1438 (2004)

    Article  Google Scholar 

  24. Jackson, R.E., Inch, K.J.: The in-situ adsorption of \(^{90}\)Sr in a sand aquifer at the Chalk River Nuclear Laboratories. J. Contam. Hydrol. 4, 27–50 (1989)

    Article  Google Scholar 

  25. Johnson, T.M., DePaolo, D.J.: Interpretation of isotopic data in groundwater-rock systems: model development and application to Sr isotope data from Yucca mountain. Water Resour. Res. 30, 1571–1587 (1994)

    Article  Google Scholar 

  26. Johnson, T.M., DePaolo, D.J.: Rapid exchange effects on isotope ratios in groundwater systems 1. Development of a transport-dissolution-exchange model. Water Resour. Res. 33, 187–195 (1997)

    Article  Google Scholar 

  27. Kovscek, A.R., Wong, H., Radke, C.J.: A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 39, 1072–1085 (1993)

    Article  Google Scholar 

  28. Kumar, M., Sok, R., Knackstedt, M.A., Latham, S., Senden, T.J., Sheppard, A.P., Varslot, T., Arns, C.: Mapping 3D pore scale fluid distributions: how rock resistivity is influenced by wettability and saturation history. Petrophysics 51, 102–117 (2010)

    Google Scholar 

  29. Langman, J.B., Ellis, A.S.: A Multi-isotope (delta D, delta(18)O, (87)Sr/(86)Sr and delta(11)B) approach for identifying saltwater intrusion and resolving groundwater evolution along the Western Caprock Escarpment of the Southern High Plains. N. M. Appl. Geochem. 25, 159–174 (2010)

    Article  Google Scholar 

  30. Lewis, T.W., Pivonka, P., Smith, D.W.: Theoretical investigation of the effects of consolidation on contaminant transport through clay barriers. Int. J. Numer. Anal. Meth. Geomech. 33, 95–116 (2009)

    Article  Google Scholar 

  31. Li, Y., Cleall, P.J.: Analytical solutions for contaminant diffusion in double-layered porous media. J. Geotech. Geoenviron. Eng. 136, 1542–1554 (2010)

    Article  Google Scholar 

  32. Liu, C., Ball, W.P.: Analytical modelling of diffusion-limited contamination and decontamination in a two-layer porous medium. Adv. Water Resour. 21, 297–313 (1998)

    Article  Google Scholar 

  33. Liu, G., Si, B.C.: Analytical modelling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients. Adv. Water Resour. 31, 251–268 (2008)

    Article  Google Scholar 

  34. Liu, G., Barbour, L., Si, B.C.: Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ. Sci. Technol. 43, 2412–2416 (2009)

    Article  Google Scholar 

  35. Malina, G.: Ecotoxicological and environmental problems associated with the former chemical plant in Tarnowskie Gory. Pol. Toxicol. 205, 157–172 (2004)

    Article  Google Scholar 

  36. Mearns, E.W., McBride, J.J.: Hydrocarbon filling history and reservoir continuity of oil fields evaluated using \(^{87}\text{ Sr }/^{86}\)Sr isotope ratio variations in formation water, with examples from the North Sea. Pet. GeoSci. 5, 17–27 (1999)

    Article  Google Scholar 

  37. Musgrove, M., Banner, J.L.: Regional groundwater mixing and the origin of saline fluids - midcontinent. U. S. Sci. 259, 1877–1882 (1993)

    Google Scholar 

  38. Muurinen, A., Karnland, O., Lehikoinen, J.: Ion concentration caused by an external solution into the porewater of compacted bentonite. Phys. Chem. Earth. Part A/B/C. 29, 119–127 (2004)

    Article  Google Scholar 

  39. Neretnieks, I.: Diffusion in the rock matrix: an important factor in radionuclide retardation. J Geophys. Res. 85, 4379–4397 (1980)

    Article  Google Scholar 

  40. Patterson, R.J., Spoel, T.: Laboratory measurements of the strontium distribution coefficient for sediments from a shallow sand aquifer. Water Resour. Res. 17, 513–520 (1981)

    Article  Google Scholar 

  41. Peng, S., Hu, Q., Hamamoto, S.: Diffusivity of rocks: gas diffusion measurements and correlation to porosity and pore size distribution. Water Resour. Res. 48, W02507 (2012)

    Google Scholar 

  42. Perkins, T.K., Johnston, O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. J. 3, 70–84 (1963)

    Article  Google Scholar 

  43. Rahimpour-Bonab, H.: A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J. Pet. Sci. Eng. 58, 1–12 (2007)

    Article  Google Scholar 

  44. Ransom, R.C.: The bulk volume water concept of resistivity well log interpretation. A theory based on a new reservoir rock resistivity model. Log Anal. XV(1), 3–31 (1974)

    Google Scholar 

  45. Rowe, R. K.: Pollutant transport through barriers. Proceedings of Geotechnical Practice for Waste Disposal ‘87/GT Div. ASCE/Ann Arbor, MI, June 15–17 (1987).

  46. Schiesser, W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego (1991)

    Google Scholar 

  47. Schubert, M., Balcazar, M., Lopez, A., Pena, P., Flores, J.H., Knoller, K.: Combination of radon and stable isotope analysis as a tool for decision support concerning the remediation of NAPL-contaminated sites. Isot. Environ. Health Stud. 43, 215–226 (2007)

    Article  Google Scholar 

  48. Schubert, M., Osenbruek, K., Knoeller, K.: Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district. Appl. Geochem. 23, 2945–2954 (2008)

    Article  Google Scholar 

  49. Shackelford, C.D.: Laboratory diffusion testing for waste disposal - a review. J. Contam. Hydrol. 7, 177–217 (1991)

    Article  Google Scholar 

  50. Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. I: background. J. Geotech. Eng. 117, 467–484 (1991)

    Article  Google Scholar 

  51. Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)

    Article  Google Scholar 

  52. Smalley, P.C., Hale, N.A.: Early identification of reservoir compartmentalization by combining a range of conventional and novel data types. SPE Form. Eval. 11, 163–169 (1996)

  53. Smalley, P.C., Dodd, T.A., Stockden, I.L., Raheim, A., Mearns, E.W.: Compositional heterogeneities in oil field formation waters: Identifying them, using them. In the geochemistry of reservoirs: Geological Society (London) Special. Publication 86, 59–69 (1995)

    Google Scholar 

  54. Smalley, P.C., England, W.A.: Reservoir compartmentalization assessed with fluid compositional data. Soc. Pet. Eng. Reserv. Eng. 9, 175–180 (1994)

    Google Scholar 

  55. Smalley, P.C., Raheim, A., Dickson, J.A.D., Emery, D.: \(^{87}\text{ Sr }/^{86}\)Sr in waters from the Lincolnshire Limestone aquifer, England, and the potential of natural strontium isotopes as a tracer for a secondary recovery seawater injection process in oilfields. Appl. Geochem. 3, 591–600 (1988)

    Article  Google Scholar 

  56. Van Loon, L., Glaus, M., Muller, W.: Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Appl. Geochem. 22, 2536–2552 (2007)

    Article  Google Scholar 

  57. Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J.L.: Nitrate in groundwater: an isotopic multi-tracer approach. J. Contam. Hydrol. 72, 165–188 (2004)

    Article  Google Scholar 

  58. Worden, R.H., Oxtoby, N.H., Smalley, P.C.: Can oil emplacement prevent quartz cementation in sandstones? Pet. Geosci. 4, 129–137 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Peter Cleall and the anonymous reviewers for their helpful inputs on this work. We also thank BP for supporting the development of these mixing models and for permission to publish this work

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason Go.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Go, J., Bortone, I., Muggeridge, A. et al. Predicting Vertical Flow Barriers Using Tracer Diffusion in Partially Saturated, Layered Porous Media. Transp Porous Med 105, 255–276 (2014). https://doi.org/10.1007/s11242-014-0369-5

Download citation

Keywords

  • Tracer diffusion
  • Mixing times-scales
  • Water saturation
  • Heterogeneity
  • Analytical solution