Abstract
In this work, we propose an original resolution of Young–Laplace equation for capillary doublets from an inverse problem. We establish a simple explicit criterion based on the observation of the contact point, the wetting angle and the gorge radius, to classify in an exhaustive way the nature of the surface of revolution. The true shape of the admissible static bridges surface is described by parametric equations; this way of expressing the profile is practical and well efficient for calculating the binding forces, areas and volumes. Moreover, we prove that the inter-particle force may be evaluated on any section of the capillary bridge and constitutes a specific invariant.
Similar content being viewed by others
Notes
The boundary conditions are not concerned for the moment.
When he studied the complicated integral form given by Monge as a solution of minimal surface problem.
When the gravity is taken into account.
The terminology of conic roulette comes from this property.
Erle et al. (1971) have limited their study to nil contact angle.
A negative suction device, as will be shown later.
Redundant information when suction is known in axisymmetric case.
Directly as the surface is additionally known to be axisymmetric, Eq. (10) can be written \(\dfrac{1}{y}\dfrac{d}{dy}\dfrac{y}{\sqrt{1+y^{\prime 2}}}=\dfrac{\Delta p}{\gamma }.\)
Note that we have \(\displaystyle { \frac{d}{dy} (y^{'2}) = \frac{1}{y^{'}} \frac{d }{d x} (y^{'2}) =2y^{''} }\).
The wetting angle is a characteristic of the liquid and of the surfaces in contact.
At the contact points, the tangent to the meridian is denoted \(t\) (Fig. 3).
The degenerate case \(y\) constant (\(y = r\sin \delta \)) corresponds to the right circular cylinder.
With a camera with macrozoom for instance.
A typical key observation to discriminate the various cases.
C. Delaunay in 1841 is the first author to propose in Delaunay (1841), p. 313 another parameterization using the angle \(\varphi \) between the tangent to the meridian curve and \(x\)-axis:
\(y\left( \varphi \right) =-a\cos \varphi +a\sqrt{1+\alpha -\sin ^{2}\varphi }\)
\(x\left( \varphi \right) =\beta +a\sin \varphi -a\tan \varphi \sqrt{1+\alpha -\sin ^{2}\varphi }+ {\displaystyle \int _{0}^{\varphi }} \dfrac{a\alpha ~d\theta }{\cos ^{2}\theta \sqrt{1+\alpha -\sin ^{2}\theta }}\)
with \(\dfrac{1}{a}=\dfrac{\Delta p}{\gamma }\), \(\ \alpha \) and \(\beta \) any constants. Note that Lindelöf (1869) has also studied in 1861 these curves using the calculus of variations.
Equivalently, we have a positive suction \(s=-\Delta p \) and therefore \(p_{int}<p_{ext}\) inside the capillary bridge.
More generally, when the radii \(r_1\) and \(r_2\) are different, the same principle demonstrates that the filling angles \(\delta _1\) and \(\delta _2\) are linked. More specifically, the following relationship applies:
$$\begin{aligned} r_1 \sin \delta _1 (2a \sin (\delta _1+\theta ) + r_1 \sin \delta _1 ) = r_2 \sin \delta _2 (2a \sin (\delta _2+\theta ) + r_2 \sin \delta _2 ). \end{aligned}$$In particular, \(a\) given by (22) is strictly positive.
Note that, as for the previous case, the condition \(b^{2} = -y^{*2} + 2ay^{*}>0\) would lead to \(\displaystyle { y^{*}<r\frac{\sin \delta }{\sin \left( \delta +\theta \right) } }\) which is already satisfied.
It cannot be encountered in the Proof of Result 2, as it would lead to infinite negative values of \(H\) and \(\lambda \), that is in contradiction with the beginning assumption \(\lambda >0\).
From Young–Laplace equation (10), as \(y^{''}\ge 0\) and \(y\ge rsin\delta \), we have necessarily \(\Delta p>0\).
Compatible with the capillary bridges with concave meridian addressed in this section.
Providing exact results for any polynomial function of degree three or less.
Accounting to the sign of the main curvatures.
Corresponding to \(\lambda >0\).
Corresponding to \(H>0\) and \(\lambda >0\).
References
Aarts, D.G., Lekkerkerker, H.N., Guo, H., Wegdam, G.H., Bonn, D.: Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95(16), 164503 (2005)
Anderson, M.L., Bassom, A.P., Fowkes, N.: Exact solutions of the Laplace-Young equation. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2076), 3645–3656 (2006)
Bear, J., Fel, L., Rubinstein, B.: Capillary Pressure Curve for Liquid Menisci in a Cubic Assembly of Spherical Particles Below Irreducible Moisture, Interpore Conference, Bordeaux, France, March 29–31 (2011)
Bendito, E., Bowick, M. J., Medina, A.: Delaunay Surfaces. arXiv preprint arXiv:1305.5681 (2013)
Bethuel, F., Rey, O.: “Le problème des surfaces à courbure moyenne prescrite”. Séminaire Équations aux dérivées partielles (dit “Goulaouic-Schwartz”) (1992–1993): 1–17.http://eudml.org/doc/112068>
Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol.I (First English ed.). New York, New York: Interscience Publishers, Inc. p. 184. (1953)
De Bisschop, F.R., Rigole, W.J.: A physical model for liquid capillary bridges between adsorptive solid spheres: the nodoid of plateau. J. Colloid Interface Sci. 88(1), 117–128 (1982)
Decent, S.P., Sharpe, G., Shaw, A.J., Suckling, P.M.: The formation of a liquid bridge during the coalescence of drops. Int. J. Multiph. Flow 32(6), 717–738 (2006)
Delaunay, C. H.: Sur la surface de révolution dont la courbure moyenne est constante. J. de mathématiques pures et appliquées, 1ère série, tome 6, 1841, pp. 309–314
De Souza, E.J., Brinkmann, M., Mohrdieck, C., Arzt, E.: Enhancement of capillary forces by multiple liquid bridges. Langmuir 24(16), 8813–8820 (2008)
Eggers, J., Lister, J.R., Stone, H.A.: Coalescence of liquid drops. J. Fluid Mech. 401, 293–310 (1999)
Eells, J.: The surfaces of Delaunay. The Math. Intell. 9(1), 53–57 (1987)
Erle, M.A., Dyson, D.C., Morrow, N.: Liquid bridges between cylinders, in a torus, and between spheres. AIChE J. 17(1), 115–121 (1971)
Gentes, M., Rousseaux, G., Coullet, P., De Gennes, P.G.: Résolution de l’équation de Young—Laplace par une méthode géométrique utilisant la courbure. Comptes Rendus Phys. 6(9), 1027–1033 (2005)
Gras, J.-Ph.: Approche micromécanique de la capillarité dans les milieux granulaires: rétention d’eau et comportement mécanique. PhD Thesis Univ. Montpellier. 2 (2011).
Gras, J-Ph, Delenne, J.Y., El Youssoufi, M.S.: Study of capillary interaction between two grains: a new experimental device with suction control. Granul. Matter 15(1), 49–56 (2013)
Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)
Lindelöf, L.: Sur les limites entre lesquelles le caténoide est une surface minima. Math. Ann. 2(1), 160–166 (1869)
Mazet, L.: Lignes de divergence pour les graphes à courbure moyenne constante. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier Masson. pp. 757–771 (2007)
Melrose, J.C., Wallick, G.C.: Exact geometrical parameters for pendular ring fluid. J. Phys. Chem. 71(11), 3676–367 (1967)
Mladenov, M.I.: Delaunay surfaces revisited. Comptes Rendus de l’Académie Bulgare des Sciences, tome 55(5), 19–24 (2002)
Murase, K., Mochida, T., Sagawa, Y., Sugama, H.: Estimation on the strength of a liquid bridge adhered to three spheres. Adv. Powder Technol. 19(4), 349–367 (2008)
Murase, K., Mochida, T., Sugama, H.: Experimental and numerical studies on liquid bridge formed among three spheres. Granul. Matter 6(2–3), 111–119 (2004)
Norbury, J., Sander, G.C., Scott, C.F.: Corner solutions of the Laplace—Young equation. Q. J. Mech. Appl. Math. 58(1), 55–71 (2005)
Orr, F.M., Scriven, L.E., Rivas, A.P.: Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech. 67(04), 723–742 (1975)
Plateau J.: Recherches expérimentales et théoriques sur les figures d’équilibre d’une masse liquide sans pesanteur. Comptes Rendus des Séances de l’Académie des Sci. Paris. 29, p. 802 (1849).
Plateau, J.: Recherches expérimentales et théoriques sur les figures d’équilibre d’une masse liquide sans pesanteur. Comptes Rendus des Séances de l’Académie des Sci. Paris. 68, 695–696 (1869)
Plateau, J.: Recherches expérimentales et théoriques sur les figures d’équilibre d’une masse liquide sans pesanteur. Comptes Rendus des Séances de l’Académie des Sci. Paris. 67, 1095–1096 (1868)
Plateau, J.: Lettre au sujet de la transformation spontanée d’un cylindre liquide en sphères isolées. Comptes Rendus des Séances de l’Académie des Sci. Paris. 65, 290–291 (1867)
Poincaré, H.: Capillarité. Cours de la Faculté des Sciences de Paris G. Carré, Editeur, Paris. Gauthier-Villars (1895)
Rynhart, P.R., McLachlan, R., Jones, J.R., McKibbin, R.: Solution of the Young—Laplace equation for three particles. Res. Lett. Inf. Math. Sci. 5, 119–127 (2003)
Rynhart, P., McKibbin, R., McLachlan, R., Jones, J.R.: Mathematical modelling of granulation: static and dynamic liquid bridges. Res. Lett. Inf. Math. Sci. 3, 199–212 (2002)
Scott, C.F., Sander, G.C., Norbury, J.: Computation of capillary surfaces for the Laplace—Young equation. Q. J. Mech. Appl. Math. 58(2), 201–212 (2005)
Shikhmurzaev, Y.D.: Coalescence and capillary breakup of liquid volumes. Phys. Fluids 12, 2386–2396 (2000)
Wu, M., Cubaud, T., Ho, C.M.: Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16, L51 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gagneux, G., Millet, O. Analytic Calculation of Capillary Bridge Properties Deduced as an Inverse Problem from Experimental Data. Transp Porous Med 105, 117–139 (2014). https://doi.org/10.1007/s11242-014-0363-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11242-014-0363-y