Skip to main content
Log in

Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential \(\zeta \). The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the electroosmotic flow arising from the droplet and polymer charge. The fluid velocity inside the droplet is linearly proportional to the electroosmotic flow velocity in the charged gel and the electroosmotic flow velocity beyond the electrical double layer of a charged interface. It is found that the polymer boundary condition at the droplet surface and the viscosities of the fluids inside and outside the droplet significantly modulate the interior fluid flow. The ionic strength and the permeability of the polymer network impact the flow differently depending on whether the flow arises from the droplet or polymer charge. Finally, the displacement of a charged droplet embedded in a gel under the influence of an external electric field is undertaken. This work is motivated by experimental attempts, which can register sub-nanometer-scale inclusion displacements in hydrogels, to advance electrical microrheology as a diagnostic tool for probing inclusion-hydrogel interfaces. In the absence of polymer charge, a close connection is found between the electrical response of a charged droplet when it is immobilized in an uncharged incompressible gel and when it is dispersed in a Newtonian electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  • Ahn, K., Kerbage, C., Hunt, T.P., Westervelt, R.M., Link, D.R., Weitz, D.A.: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88(2), 3 (2006)

    Article  Google Scholar 

  • Baroud, C.N., Gallaire, F., Dangla, R.: Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010)

    Article  Google Scholar 

  • Barz, D.P.J., Steen, P.H.: A dynamic model of the electroosmotic droplet switch. Phys. Fluids 25(9), 097104 (2013)

    Article  Google Scholar 

  • Bassetti, M.J., Chatterjee, A.N., Aluru, N.R.: Development and modeling of electrically triggered hydrogels for microfluidic applications. J. Microelectromech. Syst. 14(5), 1198–1207 (2005)

    Article  Google Scholar 

  • Beaman, D.K., Robertson, E.J., Richmond, G.L.: Ordered polyelectrolyte assembly at the oil-water interface. Proc. Natl. Acad. Sci. 109(9), 3226–3231 (2012)

    Article  Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(2), 588–590 (2000)

    Article  Google Scholar 

  • Berli, C.L.A.: The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics. Electrophoresis 34(5), 622–630 (2013)

    Article  Google Scholar 

  • Bhosale, P.S., Chun, J., Berg, J.C.: Electroacoustics of particles dispersed in polymer gel. Langmuir 27(12), 7376–7379 (2011)

    Article  Google Scholar 

  • Chabert, M., Dorfman, K.D., Viovy, J.-L.: Droplet fusion by alternating current (ac) field electrocoalescence in microchannels. Electrophoresis 26(19), 3706–3715 (2005)

    Article  Google Scholar 

  • Chang, C.-C., Yang, R.-J.: Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3(5), 501–525 (2007)

    Article  Google Scholar 

  • Cox, R.G.: The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37, 601–623 (1969)

    Article  Google Scholar 

  • DeLacey, E.H.B., White, L.R.: Dielectric response and conductivity of dilute suspensions of colloidal particles. J. Chem. Soc. Faraday Trans. 77(11), 2007–2039 (1981)

    Article  Google Scholar 

  • Desmarais, S.M., Haagsman, H.P., Barron, A.E.: Microfabricated devices for biomolecule encapsulation. Electrophoresis 33(17), 2639–2649 (2012)

    Article  Google Scholar 

  • Dhopeshwarkar, R., Sun, L., Crooks, R.M.: Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5, 1148–1154 (2005)

    Article  Google Scholar 

  • Dierking, I., Biddulph, G., Matthews, K.: Electromigration of microspheres in nematic liquid crystals. Phys. Rev. E 73(1), 011702 (2006)

    Article  Google Scholar 

  • Dommersnes, P., Rozynek, Z., Mikkelsen, A., Castberg, R., Kjerstad, K., Hersvik, K., Otto Fossum, J.: Active structuring of colloidal armour on liquid drops. Nat. Commun. 4, 2066 (2013)

    Article  Google Scholar 

  • Eddington, D.T., Beebe, D.J.: Flow control with hydrogels. Adv. Drug Deliv. Rev. 56(2), 199–210 (2004)

    Article  Google Scholar 

  • English, A.E., Tanaka, T., Edelman, E.R.: Polyelectrolyte hydrogel instabilities in ionic solutions. J. Chem. Phys. 105(23), 1066 (1996)

    Google Scholar 

  • Feng, Z., Michaelides, E.E., Mao, S.: On the drag force of a viscous sphere with interfacial slip at small but finite reynolds numbers. Fluid Dyn. Res. 44(2), 025502 (2012)

    Article  Google Scholar 

  • Fidalgo, L.M., Whyte, G., Bratton, D., Kaminski, C.F., Abell, C., Huck, W.T.S.: From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed. 47(11), 2042–2045 (2008)

    Article  Google Scholar 

  • Fiumefreddo, A., Utz, M.: Bulk streaming potential in poly(acrylic acid)/poly(acrylamide) hydrogels. Macromolecules 6(6), 2401–2420 (2010)

    Google Scholar 

  • Frenz, L., El Harrak, A., Pauly, M., Bgin-Colin, S., Griffiths, A.D., Baret, J.-C.: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 47(36), 6817–6820 (2008)

    Article  Google Scholar 

  • Fu, H.C., Shenoy, V.B., Powers, T.R.: Role of slip between a probe particle and a gel in microrheology. Phys. Rev. E 78(6), 061503 (2008)

    Article  Google Scholar 

  • Fu, H.C., Shenoy, V.B., Powers, T.R.: Low-reynolds-number swimming in gels. Europhys. Lett. 91(2), 24002 (2010)

    Article  Google Scholar 

  • Gary Leal, L.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  • Gu, W.Y., Lai, W.M., Mow, V.C.: Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 26(6), 709–723 (1993)

    Article  Google Scholar 

  • Gu, W.Y., Lai, W.M., Mow, V.C.: Transport of multi-electrolytes in charged hydrated biological soft tissues. Trans. Porous Media 34, 143–157 (1999)

    Article  Google Scholar 

  • Guo, X., Ballauff, M.: Spherical polyelectrolyte brushes: comparison between annealed and quenched brushes. Phys. Rev. E 64(5), 051406 (2001)

    Article  Google Scholar 

  • Hessel, V., Lwe, H., Schnfeld, F.: Micromixers: a review on passive and active mixing principles. Chem. Eng. Sci. 60(89), 2479–2501 (2005)

    Article  Google Scholar 

  • Hu, Y., Zhang, X., Wang, W.: Boundary conditions at the liquid-liquid interface in the presence of surfactants. Langmuir 26(13), 10693–10702 (2010)

    Article  Google Scholar 

  • Hua, J., Lim, L.K., Wang, C.-H.: Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys. Fluids 20(11), 113302 (2008)

    Article  Google Scholar 

  • Hunter, R.J.: Foundations of Colloid Science, 2nd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Jing, L., Dan, G., Jianbin, L., Guoxin, X.: Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Electrophoresis 32(3–4), 414–422 (2011)

    Article  Google Scholar 

  • Komarova, G.A., Starodubtsev, S.G., Lozinsky, V.V., Nasimova, I.R., Khokhlov, A.R.: Intelligent gels and cryogels with embedded emulsions of various oils. J. Appl. Polym. Sci. 127(4), 2703–2709 (2013)

  • Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991)

    Article  Google Scholar 

  • Leunissen, M.E., van Blaaderen, A., Hollingsworth, A.D., Sullivan, M.T., Chaikin, P.M.: Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc. Natl. Acad. Sci. 104(8), 2585–2590 (2007)

    Article  Google Scholar 

  • Levan, M.D.: Motion of a droplet with a newtonian interface. J. Colloid and Interf. Sci. 83(1), 11–17 (1981)

    Article  Google Scholar 

  • Li, H., Yuan, Z., Lam, H.P., Lee, K.Y., Chen, J., Hanes, J., Fu, J.: Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 19(9), 1097–1107 (2004)

    Article  Google Scholar 

  • Liao, G., Smalyukh, I.I., Kelly, J.R., Lavrentovich, O.D., Jákli, A.: Electrorotation of colloidal particles in liquid crystals. Phys. Rev. E 72(3), 031704 (2005)

    Article  Google Scholar 

  • Lichtenberg, J., de Rooij, N.F., Verpoorte, E.: Sample pretreatment on microfabricated devices. Talanta 56(2), 233–266 (2002)

    Article  Google Scholar 

  • Lin, K.L., Osseo-Asare, K.: Electrophoretic mobility of oil drops in the presence of solvent extraction reagents. Solvent Extr. Ion Exch. 2(3), 365–380 (1984)

    Article  Google Scholar 

  • Lin, D.C., Langrana, N.A., Yurke, B.: Force-displacement relationships for spherical inclusions in finite elastic media. J. Appl. Phys. 97, 043510 (2005)

    Article  Google Scholar 

  • Mangelsdorf, C.S., White, L.R.: Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J. Colloid and Interf. Sci. 160(2), 275–287 (1993)

    Article  Google Scholar 

  • Matos, M.A., White, L.A., Tilton, R.D.: Electroosmotically enhanced mass transfer through polyacrylamide gels. J. Colloid Interf. Sci. 300, 429–436 (2006)

    Article  Google Scholar 

  • Matos, M.A., White, L.R., Tilton, R.D.: Enhanced mixing in polyacrylamide gels containing embedded silica nanoparticles as internal electroosmotic pumps. Colloid. Surf. B 61(2), 262–269 (2008)

    Article  Google Scholar 

  • Miller, R., Liggieri, L.: Interfacial Rheology (Progress in Colloid and Interface Science). Brill, Leiden (2009)

    Book  Google Scholar 

  • Mizuno, D., Kimura, Y., Hayakawa, R.: Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys. Rev. Lett. 87(8), 088104 (2001)

    Article  Google Scholar 

  • Mohammadi, A.: Dynamics of colloidal inclusions in hydrogels, chapter 5, Ph.D. thesis, McGill university, pp. 120–179 (2011)

  • Mohammadi, A., Hill, R.J.: Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels. J. Fluid Mech. 669, 298–327 (2011)

    Article  Google Scholar 

  • Mohammadi, A.: Electric-field-induced response of a droplet embedded in a polyelectrolyte gel. Phys. Fluids 25(8), 082004 (2013)

    Article  Google Scholar 

  • Nguyen, N.-T., Wu, Z.: Micromixers: a review. J. Micromech. Microeng. 15(2), R1 (2005)

    Article  Google Scholar 

  • Nguyen, N.-T.: Micromixers : Fundamentals, Design and Fabrication. William Andrew Inc., Norwich (2008)

    Google Scholar 

  • Nield, D.A.: The beavers-joseph boundary condition and related matters: a historical and critical note. Trans. Porous Media 78(3), 537–540 (2009)

    Article  Google Scholar 

  • Norris, A.N.: Impedance of a sphere oscillating in an elastic medium with and without slip. J. Acoust. Soc. Am. 119(4), 2062–2066 (2006)

    Article  Google Scholar 

  • O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2(74), 1607–1626 (1978)

    Article  Google Scholar 

  • O’Brien, R.W.: The electrical conductivity of a dilute suspension of charged particles. J. Colloid and Interf. Sci. 81(1), 234–248 (1981)

    Article  Google Scholar 

  • Ohshima, H., Healy, T.W., White, L.R.: Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J. Chem. Soc. Faraday Trans. 80, 1643 (1984)

    Article  Google Scholar 

  • Ohshima, H.: Theory of Colloid and Interfacial Electric Phenomena, vol. 12. Academic Press, New York (2006)

    Book  Google Scholar 

  • Qiao, R., He, P.: Modulation of electroosmotic flow by neutral polymers. Langmuir 23(10), 5810–5816 (2007)

    Article  Google Scholar 

  • Raphael, E.: Annealed and quenched polyelectrolytes. Europhys. Lett. 13(7), 623–628 (1990)

    Article  Google Scholar 

  • Russel, W.B., Schowalter, W.R., Saville, D.A.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  • Sala, G., van Aken, G.A., Stuart, M.A.C., van de Velde, F.: Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J. Texture Stud. 38(4), 511–535 (2007)

    Article  Google Scholar 

  • Sala, G., van Vliet, T., Cohen Stuart, M.A., van Aken, G.A., van de Velde, F.: Deformation and fracture of emulsion-filled gels: effect of oil content and deformation speed. Food Hydrocoll. 23(5), 1381–1393 (2009)

    Article  Google Scholar 

  • Schechter, R.S., Farley, R.W.: Interfacial tension gradients and droplet behavior. Can. J. Chem. Eng. 41(3), 103–107 (1963)

    Article  Google Scholar 

  • Scriven, L.E.: Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem. Eng. Sci. 12(2), 98–108 (1960)

    Article  Google Scholar 

  • Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S.: Droplet based microfluidics. Rep. Prog. Phys. 75(1), 016601 (2012)

    Article  Google Scholar 

  • Shiga, T.: Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields In Advances in Polymer Science, vol. 134, p. 131. Springer, Berlin (1997)

    Google Scholar 

  • Shingel, K., Roberge, C., Zabeida, O., Robert, M., Klemberg-Sapieha, J.E.: Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J. Mater. Sci. 20, 681–689 (2009)

  • Spells, K.E.: A study of circulation patterns within liquid drops moving through a liquid. Proc. Phys. Soc. B 65(7), 541 (1952)

    Article  Google Scholar 

  • Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  • Stone, Z.B., Stone, H.A.: Imaging and quantifying mixing in a model droplet micromixer. Phys. Fluids 17(6), 063103 (2005)

    Article  Google Scholar 

  • Warshavsky, V.B., Zeng, X.C.: Effect of an electric field on the surface tension of a dipolar-quadrupolar fluid and its implication for sign preference in droplet nucleation. Phys. Rev. Lett. 89, 246104 (2002)

    Article  Google Scholar 

  • White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (2006)

    Google Scholar 

  • Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  Google Scholar 

  • Wiersema, P.H., Loeb, A.L., Overbeek, J.T.G.: Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interf. Sci. 22(1), 78–99 (1966)

    Article  Google Scholar 

  • Zhu, Y., Granick, S.: Apparent slip of newtonian fluids past adsorbed polymer layers. Macromolecules 35(12), 4658–4663 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to appreciate the sharif university of technology research council for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Mohammadi.

Appendices

Appendix 1: Equilibrium Base State

As there exist electrostatic interactions between the hydrogel and the droplet, the equilibrium fixed charge density \(\rho ^{f\circ }\) is not constant, and the equilibrium displacement \({\varvec{v}}^\circ \) is not zero. The equations governing equilibrium (in the absence of external stimuli) are

$$\begin{aligned}&-\epsilon _\circ \epsilon _s \nabla ^2\psi ^\circ = \rho ^{m\circ } + \rho ^{f\circ }\end{aligned}$$
(92)
$$\begin{aligned}&{\varvec{u}}^\circ = \mathbf{0}\end{aligned}$$
(93)
$$\begin{aligned}&-\varvec{\nabla }p^\circ = \rho ^{m\circ } \varvec{\nabla }\psi ^\circ \end{aligned}$$
(94)
$$\begin{aligned}&\frac{\fancyscript{E}}{2(1+\nu )}\Big [ \nabla ^2{\varvec{v}}^\circ +\frac{1}{1-2\nu } \varvec{\nabla }(\varvec{\nabla } \cdot {{\varvec{v}}^\circ }) \Big ] -\rho ^{f\circ } \varvec{\nabla }\psi ^\circ = \mathbf{0}\end{aligned}$$
(95)
$$\begin{aligned}&\rho ^{f\circ } = \rho ^{f}_r (1-\varvec{\nabla } \cdot {{\varvec{v}}^\circ })\end{aligned}$$
(96)
$$\begin{aligned}&{\varvec{u}}_d^\circ =\mathbf{0}\end{aligned}$$
(97)
$$\begin{aligned}&p_d^\circ = \text {constant}\end{aligned}$$
(98)
$$\begin{aligned}&\psi _d^\circ = \text {constant}. \end{aligned}$$
(99)

The boundary conditions satisfying the fields are \(\psi ^\circ = \zeta \), and \({\varvec{v}}^\circ = \mathbf{0}\) at \(r=a\), and \(\psi ^\circ \rightarrow 0\), \({\varvec{v}}^\circ \rightarrow \mathbf{0}\), \(\rho ^{m\circ }\rightarrow -\rho ^f_r\), \(\rho ^{f\circ }\rightarrow \rho ^f_r\), and \(p^\circ \rightarrow 0\) as \(r\rightarrow \infty \).

To obtain a general solution for the equilibrium condition, we seek an asymptotic approximation for all of the unknowns \(\psi ^\circ \), \(\rho ^{m\circ }\), \(\rho ^{f\circ }\), \({\varvec{v}}^\circ \), and \(p^\circ \). Thus,

$$\begin{aligned} \psi ^{\circ } = \psi ^{\circ }_0 + \left( \frac{e\zeta }{k_B T}\right) \psi ^{\circ }_1 + \fancyscript{O}(\zeta ^2) \end{aligned}$$
(100)

with similar expansions for \(\rho ^{m\circ }\), \(\rho ^{f\circ }\), \({\varvec{v}}^\circ \), and \(p^\circ \). Substituting Eq. (100) into Eqs. (92)–(99), and solving the resulting equations results in

$$\begin{aligned} \psi _0^\circ = 0, {\varvec{v}}_0^\circ = \mathbf{0}\text {, }\rho ^{m\circ }_0 = -\rho ^f_r, p_0^\circ = \text {constant}\text {, and }\rho ^{f\circ }_0 = \rho ^f_r \end{aligned}$$
(101)

for zeroth-order terms, and

$$\begin{aligned}&\displaystyle \psi _1^\circ = \frac{k_B T}{e} \frac{a}{r} e^{-D(r-a)}\end{aligned}$$
(102)
$$\begin{aligned}&\displaystyle {\varvec{v}}_1^\circ = -\frac{k_B T}{e} \frac{\rho ^f_r}{\fancyscript{E}}\frac{(1+\nu )(1-2\nu )}{(1-\nu )}\left[ e^{-Dr} \frac{Dr+1}{D^2 r^2} - e^{-Da} \frac{Da+1}{D^2 r^2} \right] {\varvec{e}}_r\end{aligned}$$
(103)
$$\begin{aligned}&\displaystyle \rho ^{m\circ }_1 = - \epsilon _\circ \epsilon _s \kappa ^2 \frac{k_B T}{e} \psi _1^\circ \end{aligned}$$
(104)
$$\begin{aligned}&\displaystyle p_1^\circ = \rho ^f_r \psi _1^\circ \end{aligned}$$
(105)
$$\begin{aligned}&\displaystyle \rho ^{f\circ }_1 = - \frac{(1+\nu )(1-2\nu )}{(1-\nu )} \epsilon _\circ \epsilon _s \beta ^{2} \psi _1^\circ \end{aligned}$$
(106)

for first-order terms. Note that \(D^2 = \kappa ^2+\beta ^2 (1+\nu )(1-2\nu )/(1-\nu )\), with \(\beta ^2={\rho ^{f}_r}^2/(\epsilon _\circ \epsilon _s \fancyscript{E})\); \(\beta ^{-1}\) is a length scale that characterizes the ratio of electrostatic repulsion force among fixed charge to the tensile elastic force. \(D^{-1}\) is the effective electrical double layer thickness, which has contributions from mobile ions and fixed charges. In the limit of incompressible polymer skeleton pursued in this work, \(D\rightarrow \kappa \).

Surprisingly, if the fixed charge and surface potential are like-signed, a layer with an effective thickness \(D^{-1}\) forms, which has a higher polymer segment density than the bulk. Otherwise, a depletion layer with thickness \(D^{-1}\) forms. This unexpected behavior can be explained by the screening effect of counter ions. If the gel and the droplet are like-signed, the net mobile charge density \(\rho ^{m\circ }\) is higher than in the bulk (\(=-\rho ^{f}_r\)), so the electrostatic repulsion among fixed charges is more effectively screened than in the bulk. Otherwise, with oppositely signed charge, the mobile charge density is lower than in the bulk, and the screening effect is reduced.

Appendix 2: Equations Governing Zeroth and First-Order Terms

The equations prevailing zeroth-order terms in \(e\zeta /(k_B T)\) are

$$\begin{aligned}&\epsilon _\circ \epsilon _s \fancyscript{L} \hat{\psi }^X_{0} + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j0} = 0 \end{aligned}$$
(107)
$$\begin{aligned}&\fancyscript{L} \hat{n}^X_{j0} + \frac{n_j^\infty e z_j}{k_B T} \fancyscript{L} \hat{\psi }^X_{0} = 0~(j=1\ldots M+N)\end{aligned}$$
(108)
$$\begin{aligned}&\left( \fancyscript{L}-\frac{1}{\ell ^{2}}\right) \fancyscript{L} \frac{dk^X_{0}}{dr} = 0 \end{aligned}$$
(109)
$$\begin{aligned}&\fancyscript{L}\fancyscript{L}\hat{\phi }^X_{0} - \frac{\rho ^f_r}{\mu } \fancyscript{L} \hat{\psi }^X_{0} = 0 \end{aligned}$$
(110)
$$\begin{aligned}&\fancyscript{L} \fancyscript{L} \frac{df^X_{0}}{dr} + \frac{1}{\ell ^2}\frac{\eta }{\mu } \fancyscript{L} \frac{dk^X_{0}}{dr} = 0\end{aligned}$$
(111)
$$\begin{aligned}&\fancyscript{L}\hat{\psi }^X_{d0} = 0 \end{aligned}$$
(112)
$$\begin{aligned}&\fancyscript{L} \fancyscript{L} \frac{dM^X_{0}}{dr} = 0\end{aligned}$$
(113)
$$\begin{aligned}&\hat{p}^X_0 = \rho ^f_r \hat{\psi }^X_0 + \frac{\eta }{\ell ^2} \frac{d}{dr}\left( r\frac{dk_0^X}{dr} \right) , \end{aligned}$$
(114)

and the equations prevailing first-order terms in \(e\zeta /(k_B T)\) are

$$\begin{aligned}&\displaystyle \epsilon _\circ \epsilon _s \fancyscript{L} \hat{\psi }^X_1 + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j1} = 0 \end{aligned}$$
(115)
$$\begin{aligned}&\displaystyle \fancyscript{L} \hat{n}^X_{j1} + \frac{n_j^\infty e z_j}{k_B T} \fancyscript{L}\hat{\psi }^X_1 = \frac{n_j^\infty e z_j^2}{k_B T} \left[ \frac{dG(r)}{dr} \frac{d\hat{\psi }^X_{0}}{dr} + G(r) \fancyscript{L} \hat{\psi }^X_{0} \right] \nonumber \\&\displaystyle -z_j \Bigg [ \frac{dG(r)}{dr} \frac{d\hat{n}^X_{j0}}{dr} + \frac{1}{r^2}\frac{d}{dr}\left( r^2 \frac{dG(r)}{dr} \right) \hat{n}^X_{j0} \nonumber \\&\displaystyle -\frac{n_j^\infty }{D_j} \frac{2}{r} \frac{dG(r)}{dr} \frac{dk^X_{0}}{dr}\Bigg ]~(j=1\ldots M+N)\end{aligned}$$
(116)
$$\begin{aligned}&\displaystyle \left( \fancyscript{L}-\frac{1}{\ell ^{2}}\right) \fancyscript{L} \frac{dk^X_1}{dr} = \frac{k_B T}{e\eta } \frac{1}{r}\frac{dG(r)}{dr} \left[ \epsilon _\circ \epsilon _s \kappa ^2 \hat{\psi }^X_{0} + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j0}\right] \end{aligned}$$
(117)
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \hat{\phi }^X_1 - \frac{\rho ^f_r}{\mu } \fancyscript{L} \hat{\psi }^X_1 = 0\end{aligned}$$
(118)
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \frac{df^X_1}{dr} + \frac{1}{\ell ^2}\frac{\eta }{\mu }\fancyscript{L} \frac{dk^X_1}{dr} = 0\end{aligned}$$
(119)
$$\begin{aligned}&\displaystyle \fancyscript{L}\hat{\psi }^X_{d1} = 0\end{aligned}$$
(120)
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \frac{dM^X_1}{dr} = 0 \end{aligned}$$
(121)
$$\begin{aligned}&\hat{p}^X_1 = \rho ^f_r \hat{\psi }^X_1 + \frac{\eta }{\ell ^2} \frac{d}{dr}\left( r\frac{dk_1^X}{dr} \right) + \epsilon _\circ \epsilon _s \kappa ^2 \frac{k_B T}{e} G(r) \hat{\psi }^X_0. \end{aligned}$$
(122)

Appendix 3: Functional Form of the Velocity Field Outside the Droplet

For determining the velocity field outside the droplet, function \(k_1^E\) is required, which is given by

$$\begin{aligned} \frac{dk_1^E}{dr}&= - u_{d1} \left[ i a e^{a/\ell } h_1^{(1)}\left( ir/\ell \right) + \frac{a\ell ^2(a/\ell +1)}{r^2} \right] \nonumber \\&+\, \epsilon _\circ \epsilon _s \frac{k_B T}{e\eta } e^{\kappa a} \kappa ^2 a^2 \frac{\ell }{96} \left( \frac{a}{r}\right) ^2 \left( \frac{\ell }{r}\right) ^4 \left[ \delta _1 + \delta _2 + \delta _3 - \delta _8 (\delta _4-\delta _5 ) + \delta _6 - \delta _7 \right] ,\nonumber \\ \end{aligned}$$
(123)

where

$$\begin{aligned} \delta _1&= 2 \left( r/\ell \right) ^3 e^{-\kappa r} \left[ \kappa ^3 r^3-\kappa ^2 r^2 + 2 \kappa r + 2 +16(r/a)^3 - \kappa ^4 r^4 e^{\kappa r} \text {E}_1(\kappa r)\right] , \end{aligned}$$
(124)
$$\begin{aligned} \delta _2&= (3/\beta _4)\left( 1-r/\ell \right) e^{-\kappa r} \Big [{\beta _{3}} {\beta _4}+16(r/a)^3(\beta _4+\kappa r)\nonumber \\&-{\beta _4}^3 {\beta _5}^2 (r/\ell )^4 e^{\beta _4 (r/\ell )} \text {E}_1\left[ \beta _4 (r/\ell )\right] \Big ],\end{aligned}$$
(125)
$$\begin{aligned} \delta _3&= 16 (r/\ell )^3 (r/a)\Big [3 e^{-\kappa a} \left( \kappa ^2 a^2+2 \kappa a + 2\right) \nonumber \\&-(a/r) e^{-\kappa r} \left[ \kappa ^2 a^2 + 2 (r/a) \left( \kappa ^2 r^2+3 \kappa r + 3\right) \right] \Big ]/(\kappa ^2 a^2),\end{aligned}$$
(126)
$$\begin{aligned} \delta _4&= (\ell /r)^4 e^{-{\beta _5} (r/ \ell )} \Big [{\beta _{2}} {\beta _5} + 16 (r/a)^3 ({\beta _5}-\kappa r)\nonumber \\&-{\beta _4}^2 {\beta _5}^3 (r/\ell )^4 e^{\beta _5 (r/ \ell )} \text {E}_1\left[ \beta _5 (r/\ell )\right] \Big ],\end{aligned}$$
(127)
$$\begin{aligned} \delta _5&= (\ell /a)^4 e^{-\beta _5 (a/ \ell )} \Big [18 {\beta _5} + 2 ({\beta _6}-10 \kappa \ell ) (a/\ell ) - {\beta _4}^2 {\beta _5} (a/\ell )^2 + {\beta _4}^2 {\beta _5}^2 (a/\ell )^3 \nonumber \\&-{\beta _4}^2 {\beta _5}^3 (a/\ell )^4 e^{\beta _5 (a/\ell )} \text {E}_1\left[ \beta _5 (a/\ell )\right] \Big ],\end{aligned}$$
(128)
$$\begin{aligned} \delta _6&= ({3}/{\beta _4}) (r/a)^4 e^{-\kappa a} \left[ -{\beta _{1}} e^{(a-r)/\ell }+2 (a/\ell )\right] \Bigg [18 {\beta _4}+2 ({\beta _6}+10 \kappa \ell )(a/\ell ) \nonumber \\&-{\beta _4} {\beta _5}^2 (a/\ell )^2 + {\beta _4}^2 {\beta _5}^2 (a/\ell )^3 -{{\beta _4}^3 {\beta _5}^2 (a/\ell )^4 e^{\beta _4 (a/\ell )} \text {E}_1\left[ \beta _4(a/\ell )\right] }\Bigg ], \end{aligned}$$
(129)
$$\begin{aligned} \delta _7&= 2 e^{- \kappa a} (r/a)^3 (r/\ell )\left[ (a/\ell )^2 + 3 (a/\ell ) + 3 -3 \beta _{1} e^{(a-r)/\ell }\right] \nonumber \\&\times \left[ 18+2 \kappa a - \kappa ^2 a^2 + \kappa ^3 a^3 - \kappa ^4 a^4 e^{\kappa a} \text {E}_1(\kappa a)\right] ,\end{aligned}$$
(130)
$$\begin{aligned} \delta _8&= 3 (\beta _{1}/\beta _5) (r/\ell )^4 e^{-r/\ell }, \end{aligned}$$
(131)

with

$$\begin{aligned} \beta _{1}&= r/\ell + 1, \end{aligned}$$
(132)
$$\begin{aligned} \beta _{2}&= \kappa ^3 r^3\!-\!\kappa ^2 r^2 \!+\! 2 \kappa r \!+\! 2 \!-\! (r/\ell )^2 (\kappa r \!+\! 1) \!+\! (r/\ell ) \left[ \kappa ^2 r^2 - 2 \kappa r -2 - (r/\ell )^2 \right] , \end{aligned}$$
(133)
$$\begin{aligned} \beta _{3}&= \kappa ^3 r^3-\kappa ^2 r^2 \!+\! 2 \kappa r \!+\! 2 \!-\! (r/\ell )^2 (\kappa r \!+\! 1) \!-\! (r/\ell ) \left[ \kappa ^2 r^2 \!-\! 2 \kappa r \!-\!2 \!-\! (r/\ell )^2 \right] ,\qquad \end{aligned}$$
(134)
$$\begin{aligned} \beta _4&= \kappa \ell + 1, \end{aligned}$$
(135)
$$\begin{aligned} \beta _5&= \kappa \ell - 1, \end{aligned}$$
(136)
$$\begin{aligned} \beta _6&= \kappa ^2 \ell ^2 + 1. \end{aligned}$$
(137)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A. Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels. Transp Porous Med 104, 469–499 (2014). https://doi.org/10.1007/s11242-014-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0344-1

Keywords

Navigation