Transport in Porous Media

, Volume 104, Issue 2, pp 435–449 | Cite as

A Resistance Model for Newtonian and Power-Law Non-Newtonian Fluid Transport in Porous Media

  • G. H. TangEmail author
  • Y. B. Lu


A theoretical model based on the force balance between pressure, viscous force, and inertia force is proposed to predict the flow resistance of Newtonian and power-law non-Newtonian fluids through porous packed beds. The present model takes inertia effect into consideration, and the flow regime can be extended from Darcy flow to non-Darcy flow. It is demonstrated that the present model can predict most available experimental data well. The present results are also compared to the Ergun equation and other drag correlations.


Porous media Non-Newtonian Inertia effect Non-Darcy flow  Friction factor 



This work is supported by the National Natural Science Foundation of China (No. 51222604) and the National Basic Research Program of China (973 Program) (No. 2011CB710702).


  1. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  2. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, chap. 6. Wiley, New York (1960)Google Scholar
  3. Blake, F.C.: The resistance of packing to fluid flow. Trans. Am. Inst. Chem. Eng. 14, 415–421 (1922)Google Scholar
  4. Brea, F.M., Edwards, M.F., Wilkinson, W.L.: The flow of non-Newtonian slurries through fixed and fluidised beds. Chem. Eng. Sci. 31(5), 329–336 (1976)CrossRefGoogle Scholar
  5. Carman, P.C.: Flow of Gases Through Porous Media. Butterworths Scientific Publications, London (1956)Google Scholar
  6. Christopher, R.H., Middleman, S.: Power-law flow through a packed tube. Ind. Eng. Chem. Fundam. 4(4), 422–426 (1965)CrossRefGoogle Scholar
  7. Dharmadhikari, R.V., Kale, D.D.: Flow of non-Newtonian fluids through porous media. Chem. Eng. Sci. 40(3), 527–528 (1985)CrossRefGoogle Scholar
  8. Davidson, J.F., Clift, R., Harrison, D. (eds.): Fluidisation, 2nd edn. Academic Press, New York (1985)Google Scholar
  9. Davidson, J.F., Harrison, D. (eds.): Fluidisation. Academic Press, New York (1971)Google Scholar
  10. Denn, M.M.: Process Fluid Mechanics. Prentice Hall, Upper Saddle River (1980)Google Scholar
  11. Du Plessis, J.P.: Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transp. Porous Media 16(2), 189–207 (1994)CrossRefGoogle Scholar
  12. Dudgeon, C.R.: An experimental study of the flow of water through coarse granular media. Houille Blanche 21(7), 785–801 (1966)CrossRefGoogle Scholar
  13. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, New York (1979)Google Scholar
  14. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)Google Scholar
  15. Fand, R.M., Kim, B.Y.K., Lam, A.C.C., Phan, R.T., Guyon, E., Hansen, A., Roux, S.: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J. Fluids Eng. 109(3), 268–274 (1987)CrossRefGoogle Scholar
  16. Forchheimer, P.: Wasserbewegung durch boden. Zeitschrift des Vereins. Ingenieure. 45, 1782–1788 (1901)Google Scholar
  17. Foscolo, P.U., Gibilaro, L.G., Waldram, S.P.: A unified model for particulate expansion of fluidised beds and flow in fixed porous media. Chem. Eng. Sci. 38(8), 1251–1260 (1983)CrossRefGoogle Scholar
  18. Gaitonde, N.Y., Middleman, S.: Flow of viscoelastic fluids through porous media. Ind. Eng. Chem. Fundam. 6, 145–147 (1967)CrossRefGoogle Scholar
  19. Gregory, D.R., Griskey, R.G.: Flow of molten polymers through porous media. AIChE. J. 13(1), 122–125 (1967)CrossRefGoogle Scholar
  20. Greenkorn, R.A.: Flow Phenomena in Porous Media. Marcel Dekker Inc., New York (1983)Google Scholar
  21. Gupte, A.R.: Experimentelle Untersuchung der Einflüsse von Porosität und Korngrößenverteilung im Widerstandsgesetz der Porenströmung. Ph.D. Thesis, University of Karlsruhe (TH) (1970)Google Scholar
  22. Hanna, M.R., Kozicki, W., Tiu, C.: Flow of drag-reducing fluids through packed beds. Chem. Eng. J. 13(2), 93–99 (1977)CrossRefGoogle Scholar
  23. Kembłowski, Z., Mertl, J.: Pressure drop during the flow of Stokesian fluids through granular beds. Chem. Eng. Sci. 29(1), 213–223 (1974)CrossRefGoogle Scholar
  24. Kembłowski, Z., Michniewicz, M.: A new look at the laminar flow of power law fluids through granular beds. Rheol. Acta 18(6), 730–739 (1979)CrossRefGoogle Scholar
  25. Kunni, D., Levenspiel, O.: Fluidization Engineering. Wiley, New York (1969)Google Scholar
  26. Leva, M.: Fluidization. McGraw-Hill, New York (1957)Google Scholar
  27. Li, L., Ma, W.: Experimental study on the effective particle diameter of a packed bed with non-spherical particles. Transp. Porous Media 89(1), 35–48 (2011)CrossRefGoogle Scholar
  28. Liu, S., Afacan, A., Masliyah, J.: Steady incompressible laminar flow in porous media. Chem. Eng. Sci. 49(21), 3565–3586 (1994)CrossRefGoogle Scholar
  29. Marshall, R.J., Metzner, A.B.: Flow of viscoelastic fluids through porous media. Ind. Eng. Chem. Fundam. 6(3), 393–400 (1967)CrossRefGoogle Scholar
  30. Michele, H.: Zur Durchflußcharakteristik von Schüttungen bei der Durchströmung mit verdünnten Lösungen aus langkettigen Hochpolymeren. Rheol. Acta 16(4), 413–437 (1977)CrossRefGoogle Scholar
  31. Mishra, P., Singh, D., Mishra, I.M.: Momentum transfer to Newtonian and non-Newtonian fluids flowing through packed and fluidized beds. Chem. Eng. Sci. 30(4), 397–405 (1975)CrossRefGoogle Scholar
  32. Scheidegger, A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1974)Google Scholar
  33. Schneebeli, G.: Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans un écoulement de filtration. Houille Blanche 2, 141–149 (1955)CrossRefGoogle Scholar
  34. Shah, D.O., Schechter, R.S.: Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, New York (1977)Google Scholar
  35. Shenoy, A.V.: Darcy–Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transp. Porous Media 11(3), 219–241 (1993)CrossRefGoogle Scholar
  36. Siskovic, N., Gregory, D.R., Griskey, R.G.: Viscoelastic behavior of molten polymers in porous media. AIChE. J. 17(2), 281–285 (1971)CrossRefGoogle Scholar
  37. Sobie, K.S.: Polymer Improve Oil Recovery. Blackie and Sons, Glasgow (1991)Google Scholar
  38. Tang, G.H., Tao, W.Q., He, Y.L.: Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Phys. Rev. E 72, 056301 (2005)CrossRefGoogle Scholar
  39. Wang, Z.L., Ding, Y.L., Ghadiri, M.: Flow of a gas–solid two-phase mixture through a packed bed. Chem. Eng. Sci. 59(15), 3071–3079 (2004)CrossRefGoogle Scholar
  40. Wu, J.S., Yu, B.M.: A fractal resistance model for flow through porous media. Int. J. Heat Mass Transf. 50, 3925–3932 (2007)CrossRefGoogle Scholar
  41. Wu, J.S., Yu, B.M., Yun, M.: A resistance model for flow through porous media. Transp. Porous Media 71, 331–343 (2008)CrossRefGoogle Scholar
  42. Wu, Y.S., Pruess, K.: Flow of non-Newtonian fluids in porous media. Adv. Porous Media 3, 87–184 (1996)CrossRefGoogle Scholar
  43. Yates, J.G.: Fundamentals of Fluidized-bed Chemical Processes. Butterworths Scientific Publications, London (1983)Google Scholar
  44. Yu, B.M., Li, J.H.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21, 1569–1571 (2004)CrossRefGoogle Scholar
  45. Yu, J., Zhang, M., Fan, W., Zhou, Y., Zhao, G.: Study on performance of the ball packed-bed regenerator: experiments and simulation. Appl. Therm. Eng. 22(6), 641–651 (2002)CrossRefGoogle Scholar
  46. Yu, Y.H., Wen, C.Y., Bailie, R.C.: Power-law fluids flow through multiparticle system. Can. J. Chem. Eng. 46(3), 149–154 (1968)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’an People’s Republic of China

Personalised recommendations