Advertisement

Transport in Porous Media

, Volume 104, Issue 2, pp 385–405 | Cite as

Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies

  • Nicolas C. M. MartyEmail author
  • Isabelle Munier
  • Eric C. Gaucher
  • Christophe Tournassat
  • Stéphane Gaboreau
  • Chan Quang Vong
  • Eric Giffaut
  • Benoit Cochepin
  • Francis Claret
Article

Abstract

During the last decade, numerous studies have focused on long-term predictive reactive transport modelling of cement/clay interactions. These simulations have been performed using modelling strategies of growing complexity, e.g. (i) taking more minerals into account, (ii) considering the effect of dissolution/precipitation kinetics versus thermodynamic equilibrium, (iii) refining the spatial discretisation of the models, etc. The present study reviews these simulations in order to identify the main factors affecting numerical results (e.g. mass transport, mesh, selected phases). Simulations are reproduced here with a consistent set of data and input parameters arranged with increasing order of complexity. Only such a standardised approach can allow a proper comparison of numerical results. Modelled reaction pathways (i.e. mineralogical transformations) appear to be independent from the chosen modelling assumptions. Irrespective of the simulated case or the underlying hypotheses, the geochemical transformations remain located very close to the cement/clay interface.

Keywords

Concrete Callovo-Oxfordian Clay-rock PHREEQC Modelling 

Notes

Acknowledgments

This research is a part of the simulation programme initiated, monitored and supported by the French National Radioactive Waste Management Agency (Andra) and the French Geological Survey (BRGM). We thank Dr. Mauro Cacace and one anonymous reviewer for their constructive comments, which helped us to improve the manuscript.

Supplementary material

11242_2014_340_MOESM1_ESM.dat (58 kb)
Supplementary material 1 (dat 57 KB)
11242_2014_340_MOESM2_ESM.txt (11 kb)
Supplementary material 2 (txt 10 KB)
11242_2014_340_MOESM3_ESM.txt (15 kb)
Supplementary material 3 (txt 15 KB)
11242_2014_340_MOESM4_ESM.txt (16 kb)
Supplementary material 4 (txt 15 KB)
11242_2014_340_MOESM5_ESM.txt (16 kb)
Supplementary material 5 (txt 15 KB)
11242_2014_340_MOESM6_ESM.txt (16 kb)
Supplementary material 6 (txt 15 KB)
11242_2014_340_MOESM7_ESM.txt (17 kb)
Supplementary material 7 (txt 16 KB)
11242_2014_340_MOESM8_ESM.txt (21 kb)
Supplementary material 8 (txt 21 KB)
11242_2014_340_MOESM9_ESM.txt (159 kb)
Supplementary material 9 (txt 159 KB)

References

  1. Adler, M., Mäder, U.K., Waber, H.N.: High-pH alteration of argillaceous rocks: an experimental study. Schweiz. Min. 79(3), 445–454 (1999)Google Scholar
  2. Amram, K., Ganor, J.: The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochim. Cosmochim. Acta 69(10), 2535–2546 (2005)CrossRefGoogle Scholar
  3. Andersson, K., Allard, B., Bengtsson, M., Magnusson, B.: Chemical-Composition of Cement Pore Solutions. Cem. Concr. Res. 19(3), 327–332 (1989)CrossRefGoogle Scholar
  4. Appelo, C.A.J., Wersin, P.: Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide and sodium in Opalinus Clay. Environ. Sci. Technol. 41(14), 5002–5007 (2007)CrossRefGoogle Scholar
  5. Appelo, C.A.J., Vinsot, A., Mettler, S., Wechner, S.: Obtaining the porewater composition of a clay rock by modeling the in- and out-diffusion of anions and cations from an in-situ experiment. J. Contam. Hydrol. 101(1–4), 67–76 (2008)CrossRefGoogle Scholar
  6. Appelo, C.A.J., Van Loon, L.R., Wersin, P.: Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochim. Cosmochim. Acta 74(4), 1201–1219 (2010)CrossRefGoogle Scholar
  7. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146(5), 54–62 (1942)CrossRefGoogle Scholar
  8. Bauer, A., Berger, G.: Kaolinite and smectite dissolution rate in high molar KOH solutions at \(35^{\circ }\) and \(80^{\circ }\text{ C }\). Appl. Geochem. 13(7), 905–916 (1998)CrossRefGoogle Scholar
  9. Bennett, P.C.: Quartz dissolution in organic-rich aqueous systems. Geochim. Cosmochim. Acta 55(7), 1781–1797 (1991)CrossRefGoogle Scholar
  10. Bennett, P.C., Melcer, M.E., Siegel, D.I., Hassett, J.P.: The dissolution of quartz in dilute aqueous solutions of organic acids at \(25^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 52(6), 1521–1530 (1988)CrossRefGoogle Scholar
  11. Bickmore, B.R., Nagy, K.L., Gray, A.K., Brinkerhoff, A.R.: The effect of \(\text{ Al(OH) }_{4}^{-}\) on the dissolution rate of quartz. Geochim. Cosmochim. Acta 70(2), 290–305 (2006)CrossRefGoogle Scholar
  12. Bosbach, D., Charlet, L., Bickmore, B., Hochella, M.F.: The dissolution of hectorite: in-situ, real-time observations using atomic force microscopy. Am. Mineral. 85(9), 1209–1216 (2000)Google Scholar
  13. Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cem. Concr. Res. 40(6), 851–866 (2010a)CrossRefGoogle Scholar
  14. Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: thermodynamic data assessment for phases other than C–S–H. Cem. Concr. Res. 40(9), 1360–1374 (2010b)CrossRefGoogle Scholar
  15. Blum, A.E., Yund, R.A., Lasaga, A.C.: The effect of dislocation density on the dissolution rate of quartz. Geochim. Cosmochim. Acta 54(2), 283–297 (1990)CrossRefGoogle Scholar
  16. Brady, P.V., Walther, J.V.: Kinetics of quartz dissolution at low temperatures. Chem. Geol. 82, 253–264 (1990)CrossRefGoogle Scholar
  17. Brandt, F., Bosbach, D., Krawczyk-Barsch, E., Arnold, T., Bernhard, G.: Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach. Geochim. Cosmochim. Acta 67(8), 1451–1461 (2003)CrossRefGoogle Scholar
  18. Burnol, A., Blanc, P., Xu, T., Spycher, N., Gaucher, E.C.: Uncertainty in predictions of transfer model response to a thermal and alkaline perturbation in clay. In: Tough Symposium 2006. Lawrence Berkeley National Laboratory, Berkeley (2006)Google Scholar
  19. Cama, J., Ganor, J., Ayora, C., Lasaga, C.A.: Smectite dissolution kinetics at \(80^{\circ }\text{ C }\) and pH 8.8. Geochim. Cosmochim. Acta 64(15), 2701–2712 (2000)CrossRefGoogle Scholar
  20. Casey, W.H., Lasaga, A.C., Gibbs, G.V.: Mechanisms of silica dissolution as inferred from the kinetic isotope effect. Geochim. Cosmochim. Acta 54(12), 3369–3378 (1990)CrossRefGoogle Scholar
  21. Chagneau, A., Claret, F., Madé, B., Wolf, M., Enzmann, F., Schäfer, T.: Coupling HTO tracer experiments and tomography imaging to monitor the effects of celestite porosity clogging on diffusion properties in porous media. Mineral. Mag. 77(5), 847 (2013)Google Scholar
  22. Claret, F., Sakharov, B.A., Drits, V.A., Velde, B., Meunier, A., Griffault, L., Lanson, B.: Clay minerals in the Meuse - Haute Marne underground laboratory (France): possible influence of organic matter on clay mineral evolution. Clays Clay Miner. 52(5), 515–532 (2004)CrossRefGoogle Scholar
  23. Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C.I., Lagneau, V., Van der lee, J.: Approaches to modelling coupled flow and reaction in a 2D cementation experiment. Adv. Water Resour. 31(12), 1540–1551 (2008)CrossRefGoogle Scholar
  24. Devidal, J.L., Schott, J., Dandurand, J.L.: An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at \(150^{\circ }\text{ C }\), 40 bars, and pH 2, 6.8, and 7.8. Geochim. Cosmochim. Acta 61(24), 5165–5186 (1997)CrossRefGoogle Scholar
  25. De Windt, L., Pellegrini, D., Van Der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68(3–4), 165–182 (2004)CrossRefGoogle Scholar
  26. De Windt, L., Marsal, F., Tinseau, E., Pellegrini, D.: Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France). Phys. Chem. Earth 33(A/B/C), S295–S305 (2008)Google Scholar
  27. Dove, P.M.: The dissolution kinetics of quartz in sodium chloride solutions at 25 to \(300^{\circ }\text{ C }\). Am. J. Sci. 294(6), 665–712 (1994)CrossRefGoogle Scholar
  28. Dove, P.M.: The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim. Cosmochim. Acta 63(22), 3715–3727 (1999)CrossRefGoogle Scholar
  29. Dove, P.M., Crerar, D.A.: Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim. Cosmochim. Acta 54(4), 955–969 (1990)CrossRefGoogle Scholar
  30. Duro, L., Grivé, M., Giffaut, E. : ThermoChimie, the ANDRA Thermodynamic Database. In: MRS Proceedings 1475 (2012)Google Scholar
  31. Fernandez, R., Cuevas, J., Mader, U.K.: Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier. Cem. Concr. Res. 40(8), 1255–1264 (2010)CrossRefGoogle Scholar
  32. Fourcade, S., Trotignon, L., Boulvais, P., Techer, I., Elie, M., Vandamme, D., Salameh, E., Khoury, H.: Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: Isotopic (C, O) study of the Khushaym Matruk natural analogue (central Jordan). Appl. Geochem. 22(7), 1293–1310 (2007)CrossRefGoogle Scholar
  33. Gaboreau, S., Prêt, D., Tinseau, E., Claret, F., Pellegrini, D., Stammose, D.: 15 years of in situ cement–argillite interaction from Tournemire URL: characterisation of the multi-scale spatial heterogeneities of pore space evolution. Appl. Geochem. 26(12), 2159–2171 (2011)CrossRefGoogle Scholar
  34. Gaboreau, S., Lerouge, C., Dewonck, S., Linard, Y., Bourbon, X., Fialips, C.I., Mazurier, A., Prêt, D., Borschneck, D., Montouillout, V., Gaucher, E.C., Claret, F.: In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context. Am. J. Sci. 312(3), 314–356 (2012a)CrossRefGoogle Scholar
  35. Gaboreau, S., Claret, F., Crouzet, C., Giffaut, E., Tournassat, Ch.: Caesium uptake by Callovian-Oxfordian clayrock under alkaline perturbation. Appl. Geochem. 27(6), 1194–1201 (2012b)CrossRefGoogle Scholar
  36. Ganor, J., Huston, T.J., Walter, L.M.: Quartz precipitation kinetics at \(180^{\circ }\text{ C }\) in NaCl solutions—implications for the usability of the principle of detailed balancing. Geochim. Cosmochim. Acta 69(8), 2043–2056 (2005)CrossRefGoogle Scholar
  37. Gaucher, E.C., Blanc, P.: Cement/clay interactions—a review: experiments, natural analogues, and modeling. Waste Manage. 26(7), 776–788 (2006)CrossRefGoogle Scholar
  38. Gaucher, E.C., Blanc, E., Matray, J.M., Michau, N.: Modeling diffusion of an alkaline plume in a clay barrier. Appl. Geochem. 19(10), 1505–1515 (2004a)Google Scholar
  39. Gaucher, E.C., Robelin, C., Matray, J., Negrel, G., Gros, Y., Heitz, J.F., Vinsot, A., Rebours, H., Cassagnabère, A., Bouchet, A.: ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Phys. Chem. Earth 29(1), 55–77 (2004b)Google Scholar
  40. Gaucher, E.C., Blanc, Ph, Bardot, F., Braibant, G., Buschaert, S., Crouzet, C., Gautier, A., Girard, J.P., Jacquot, E., Lassin, A., Negrel, G., Tournassat, C., Vinsot, A., Altmann, S.: Modelling the porewater chemistry of the Callovian-Oxfordian formation at a regional scale. Comptes Rendus Geosci. 338(12–13), 917–930 (2006)CrossRefGoogle Scholar
  41. Gaucher, E.C., Tournassat, C., Pearson, F.J., Blanc, P., Crouzet, C., Lerouge, C., Altmann, S.: A robust model for pore-water chemistry of clayrock. Geochim. Cosmochim. Acta 73(21), 6470–6487 (2009)CrossRefGoogle Scholar
  42. Gautier, J.M., Oelkers, E.H., Schott, J.: Experimental study of K-feldspar dissolution rates as a function of chemical affinity at \(150^{\circ }\text{ C }\) and pH 9. Geochim. Cosmochim. Acta 58(21), 4549–4560 (1994)CrossRefGoogle Scholar
  43. Giffaut, E., Grivé, M., Blanc, Ph., Vieillard, Ph., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L.: Andra thermodynamic data for performance assessment: ThermoChimie. Appl. Geochem. (2014). doi: 10.1016/j.apgeochem.2014.05.007
  44. Golubev, S.V., Bauer, A., Pokrovsky, O.S.: Effect of pH and organic ligands on the kinetics of smectite dissolution at \(25^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 70(17), 4436–4451 (2006)CrossRefGoogle Scholar
  45. Gustafsson, Å.B., Puigdomenech, I.: The effect of pH on chlorite dissolution rates at \(25^{\circ }\text{ C }\). Res. Soc. Symp. Proc. 757, II3.16 (2002)CrossRefGoogle Scholar
  46. Hayek, M., Kosakowski, G., Churakov, S.: Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change. Water Resour. Res. 47(7), W07545 (2011)CrossRefGoogle Scholar
  47. Hees, P.A.W., Lundström, U.S., Mörth, C.M.: Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids. Chem. Geol. 189(3–4), 199–211 (2002)CrossRefGoogle Scholar
  48. House, W.A., Orr, D.R.: Investigation of the pH dependence of the kinetics of quartz dissolution at \(25^{\circ }\text{ C }\). J. Chem. Soc. Faraday Trans. 88(2), 233–241 (1992)CrossRefGoogle Scholar
  49. Huertas, F.J., Caballero, E., Jimenez de Cisneros, C., Huertas, F., Linares, J.: Kinetics of montmorillonite dissolution in granitic solutions. Appl. Geochem. 16(4), 397–407 (2001)CrossRefGoogle Scholar
  50. Icenhower, J.P., Dove, P.M.: The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim. Cosmochim. Acta 64(24), 4193–4203 (2000)CrossRefGoogle Scholar
  51. Knauss, K.G., Copenhaver, S.A.: The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at \(70^{\circ }\text{ C }\). Appl. Geochem. 10(1), 17–33 (1995)CrossRefGoogle Scholar
  52. Knauss, K.G., Wolery, T.J.: The dissolution kinetics of quartz as a function of pH and time at \(70^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 52(1), 43–53 (1988)CrossRefGoogle Scholar
  53. Köhler, S.J., Dufaud, F., Oelkers, E.H.: An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to \(50^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 67(19), 3583–3594 (2003)CrossRefGoogle Scholar
  54. Köhler, S.J., Bosbach, D., Oelkers, E.H.: Do clay mineral dissolution rates reach steady state? Geochim. Cosmochim. Acta 69(8), 1997–2006 (2005)CrossRefGoogle Scholar
  55. Lambert, P., Brueckner, R., Atkins, C.: Degradation of cement and concrete. Shreir’s Corros. 3, 2348–2368 (2010)CrossRefGoogle Scholar
  56. Lerouge, C., Michel, P., Gaucher, E.C., Tournassat, C.: A geological, mineralogical and geochemical GIS for the Andra URL: a tool for the water–rock interactions modeling at a regional scale. In: SKB (Ed.), FUNMIG—2nd Annual Workshop, Stockholm-Sweden (2006)Google Scholar
  57. Lowson, R.T., Comarmond, M.C.J., Rajaratnam, G., Brown, P.L.: The kinetics of the dissolution of chlorite as a function of pH and at \(25^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 69(7), 1687–1699 (2005)CrossRefGoogle Scholar
  58. Lowson, R.T., Brown, P.L., Comarmond, M.C.J., Rajaratnam, G.: The kinetics of chlorite dissolution. Geochim. Cosmochim. Acta 71(6), 1431–1447 (2007)CrossRefGoogle Scholar
  59. Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modeling of concrete/clay interactions. J. Hydrol. 364(1/2), 58–72 (2009)CrossRefGoogle Scholar
  60. Marty, N.C.M., Cama, J., Sato, T., Chino, D., Villiéras, F., Razafitianamaharavo, A., Brendlé, J., Giffaut, E., Soler, J.M., Gaucher, E.C., Tournassat, C.: Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach. Geochim. Cosmochim. Acta 75(20), 5849–5864 (2011)CrossRefGoogle Scholar
  61. Metz, V., Amram, K., Ganor, J.: Stoichiometry of smectite dissolution reaction. Geochim. Cosmochim. Acta 69(7), 1755–1772 (2005a)CrossRefGoogle Scholar
  62. Metz, V., Raanan, H., Pieper, H., Bosbach, D., Ganor, J.: Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochim. Cosmochim. Acta 69(10), 2581–2591 (2005b)CrossRefGoogle Scholar
  63. Murphy, W.M., Helgeson, H.C.: Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV. Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline. Am. J. Sci. 289, 17–101 (1989)CrossRefGoogle Scholar
  64. Nagy, K.L., Lasaga, A.C.: Simultaneous precipitation kinetics of kaolinite and gibbsite at \(80^{\circ }\text{ C }\) and pH 3. Geochim. Cosmochim. Acta 57(17), 4329–4335 (1993)CrossRefGoogle Scholar
  65. Nakayama, S., Sakamoto, Y., Yamaguchi, T., Akai, M., Tanaka, T., Sato, T., Iida, Y.: Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions. Appl. Clay Sci. 27(1–2), 53–65 (2004)CrossRefGoogle Scholar
  66. Parkhurst, D.L., Appelo, C.A.J.: User’s Guide to phreeqc—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations. U.S. Geological Survey, Denver (1999)Google Scholar
  67. Rimstidt, J.D., Barnes, H.L.: The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44(11), 1683–1699 (1980)CrossRefGoogle Scholar
  68. Rozalén, M.L., Huertas, F.J., Brady, P.V., Cama, J., García-Palma, S., Linares, J.: Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at \(25^{\circ }\text{ C }\). Geochim. Cosmochim. Acta 72(17), 4224–4253 (2008)CrossRefGoogle Scholar
  69. Rozalén, M., Brady, P.V., Huertas, F.J.: Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics. J. Colloid Interface Sci. 333(2), 474–484 (2009)CrossRefGoogle Scholar
  70. Savage, D., Noy, D., Mihara, M.: Modeling the interaction of bentonite with hyperalkaline fluids. Appl. Geochem. 17(3), 207–223 (2002)CrossRefGoogle Scholar
  71. Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., Takase, H.: Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary. Phys. Chem. Earth 32(1–7), 287–297 (2007)Google Scholar
  72. Savage, D., Benbow, S., Watson, C., Takase, H., Ono, K., Oda, C., Honda, A.: Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Appl. Clay Sci. 47(1–2), 72–81 (2010)CrossRefGoogle Scholar
  73. Sayed Hassan, M., Villieras, F., Gaboriaud, F., Razafitianamaharavo, A.: AFM and low-pressure argon adsorption analysis of geometrical properties of phyllosilicates. J. Colloid Interface Sci. 296(2), 614–623 (2006)CrossRefGoogle Scholar
  74. Schott, J., Oelkers, E.H.: Dissolution and crystallisation rates of silicate minerals as a function of chemical affinity. Pure Appl. Chem. 67(6), 903–910 (1995)CrossRefGoogle Scholar
  75. Schwartzentruber, J., Furst, W., Renon, H.: Dissolution of quartz into dilute alkaline solutions at \(90^{\circ }\text{ C }\): a kinetic study. Geochim. Cosmochim. Acta 51(7), 1867–1874 (1987)CrossRefGoogle Scholar
  76. Soler, J.M.: Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: the case of Wellenberg. Appl. Geochem. 18(10), 1555–1571 (2003)CrossRefGoogle Scholar
  77. Soler, J.M., Vuorio, M., Hautojärvi, A.: Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland). Appl. Geochem. 26(7), 1115–1129 (2011)CrossRefGoogle Scholar
  78. Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58(17), 3595–3612 (1994)CrossRefGoogle Scholar
  79. Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures II: infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209(1–4), 200–224 (1998)CrossRefGoogle Scholar
  80. Stillings, L.L., Brantley, S.L.: Feldspar dissolution at \(25^{\circ }\text{ C }\) and pH 3: reaction stoichiometry and the effect of cations. Geochim. Cosmochim. Acta 59(8), 1483–1496 (1995)CrossRefGoogle Scholar
  81. Tits, J., Wieland, E., Müller, C.J., Landesman, C., Bradbury, M.H.: Strontium binding by calcium silicate hydrates. J. Colloid Interface Sci. 300(1), 78–87 (2006)CrossRefGoogle Scholar
  82. Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., Charlet, L.: Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. Am. Mineral. 88, 1989–1995 (2003)Google Scholar
  83. Trotignon, L., Didot, A., Bildstein, O., Lagneau, V., Margerit, Y.: Design of a 2D cementation experiment in porous medium using numerical simulation. Oil Gas. Sci. Technol. Rev. IFP 60(2), 307–318 (2005)CrossRefGoogle Scholar
  84. Trotignon, L., Peycelon, H., Bourbon, X.: Comparison of performance of concrete barriers in a clayey geological medium. Phys. Chem. Earth 31(10–14), 610–617 (2006)Google Scholar
  85. Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., Bourbon, X.: Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Phys. Chem. Earth 32(1–7), 259–274 (2007)Google Scholar
  86. Vieillard, P., Ramirez, S., Bouchet, A., Cassagnabere, A., Meunier, A., Jacquot, E.: Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modeling of mineral reactions. Appl. Geochem. 19(11), 1699–1709 (2004)CrossRefGoogle Scholar
  87. Vinsot, A., Mettler, S., Wechner, S.: In situ characterisation of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth 33, S75–S86 (2008)Google Scholar
  88. Watson, C., Hane, K., Savage, D., Benbow, S., Cuevas, J., Fernandez, R.: Reaction and diffusion of cementitious water in bentonite: results of ‘blind’ modeling. Appl. Clay Sci. 45(1–2), 54–69 (2009)CrossRefGoogle Scholar
  89. Yang, L., Steefel, C.I.: Kaolinite dissolution and precipitation kinetics at \(22^{\circ }\text{ C }\) and pH 4. Geochim. Cosmochim. Acta 72(1), 99–116 (2008)CrossRefGoogle Scholar
  90. Yokoyama, S., Kuroda, M., Sato, T.: Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions. Clay Clay Miner. 53(2), 147–154 (2005)CrossRefGoogle Scholar
  91. Zysset, M., Schindler, P.W.: The proton promoted dissolution kinetics of K-montmorillonite. Geochim. Cosmochim. Acta 60(6), 921–931 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nicolas C. M. Marty
    • 1
    Email author
  • Isabelle Munier
    • 2
  • Eric C. Gaucher
    • 1
  • Christophe Tournassat
    • 1
  • Stéphane Gaboreau
    • 1
  • Chan Quang Vong
    • 1
  • Eric Giffaut
    • 2
  • Benoit Cochepin
    • 2
  • Francis Claret
    • 1
  1. 1.BRGM, D3E/SVPOrléans Cedex 2France
  2. 2.AndraChâtenay-Malabry CedexFrance

Personalised recommendations