Transport in Porous Media

, Volume 104, Issue 2, pp 315–333 | Cite as

Heterogeneous Alkane Reactions over Nanoporous Catalysts

  • Talib M. N. AlbayatiEmail author
  • Sophie E. Wilkinson
  • Arthur A. Garforth
  • Aidan M. Doyle


Pt-USY-712 (Si/Al = 6) and three SBA-15 catalysts (metal-loaded with 1 wt% Pt, 1 wt% Ni or 0.5 wt% Pt and 0.5 wt% Ni) were prepared and characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD), N\(_{2}\) adsorption porosimetry / BET and transmission electron microscopy (TEM). The catalysts were then tested in the hydroisomerisation and hydrocracking of \(n\)-heptane using a micro-reactor at atmospheric pressure, and the products were analysed by GC-FID. Reaction temperatures ranged from 250–\(400\,\,^{\circ }\hbox {C}\) while the W/F values of \(n\hbox {-C}_{7}\) varied from 224.70–550.57 kg \(\hbox {mol}^{-1}\). The coke content of each catalyst was measured using thermo gravimetric analysis (TGA). The catalytic activity was highest on Pt-USY-712 at the lowest reaction temperatures due to (a) the presence of strong Brønsted acids sites on the zeolite and (b) the smaller and more highly dispersed metal clusters on Pt-USY-712, relative to Pt-SBA-15. The activity was higher on the bimetallic Pt/Ni-SBA-15 than on mono-metallic Pt-SBA-15 as the co-impregnation of Ni with Pt enhanced the distribution of the metal clusters on the catalyst and resulted in improved surface area for reaction. The Pt-SBA-15 and Pt/Ni-SBA-15 catalysts both had the lowest and approximately equal coke percentages with 0.116 and 0.119 wt%, respectively.


\(n\)-Heptane hydroisomerisation Zeolites Mesoporous silica SBA-15 

List of Symbols


Arrhenius constant


Brunauer Emmett Teller


Carbon number


Activation energy


Energy dispersive X-ray analysis


Mass flow rate


Flame ionisation detector


Gas chromatography




Internal diameter


Rate constant




Molecular weight


Partial vapour pressure

\(\hbox {p}^{0}\)

Saturated pressure


Total pressure


Gas constant


Reference factor


Research octane number


Standard derivation


Scanning electron microscopy




Transmission electron microscopy


Thermo gravimetric analysis


Ultra stable Y 12




Volume adsorbed


Volumetric flow rate


Weight of catalyst


Weight hourly space velocity



Dr. Talib M. Albayati is grateful to the University of Technology, Baghdad for allowing postdoctoral leave and to Manchester Metropolitan University for financial support.


  1. Abudawood, R.H., Alotaibi, F.M., Garforth, A.A.: Hydroisomerisation of n-C7 over Pt-loaded USY zeolites. Effect of steaming, dealumination, and the resulting structure on catalytic properties. Ind. Eng. Chem. Res. 50, 9918–9924 (2011)CrossRefGoogle Scholar
  2. Alotaibi, F.M.: Comparisons of the time on-stream stability of bifunctionalnanoporous-based catalysts in n-heptane hydroisomerisation. School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester (2011)Google Scholar
  3. Al-Shaikhali, A.H.: n-Heptane hydroisomerisation over bifunctional zeolite catalysts. The School of Chemistry, The University of Manchester, Manchester (2011)Google Scholar
  4. Bartholomew, C.H., Farrauto, R.J.: Fundametals of industrial catalytic processes, 2nd edn. Wiley, London (1997)Google Scholar
  5. Carranza, R.: Catalysis-A look at the basics. Chem. Processes 65(5), 47–49 (1999)Google Scholar
  6. Chiu, J.J., Pine, D.J., Bishop, S.T., Chmelka, B.F.: Friedel-Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders. J. Catal. 221, 400–412 (2004)CrossRefGoogle Scholar
  7. Denayer, J.F., Jonckheere, B.D., Hloch, M., Marin, G.B., Vanbutsele, G., Martens, J.A., Baron, G.V.: Molecular competition of C7 and C9 n-alkanes in vapour- and liquid-phase hydroconversion over bifunctional Pt-USY zeolite catalysts. J. Catal. 210, 445–452 (2002)CrossRefGoogle Scholar
  8. Dinsea, A., Khennachea, S., Franka, B., Hessb, C., Herbertb, R.: Oxidative dehydrogenation of propane on silica (SBA-15) supported vanadia catalysts: a kinetic investigation. J. Mol. Catal A. 307, 45–50 (2009)Google Scholar
  9. Dwyer, J.: Zeolite structure, composition and catalysis. Chem. Ind. 7, 258–269 (1984)Google Scholar
  10. Fogler, H.S.: Elements of chemical reaction engineering, 4th edn. Pearson Education Ltd., Massachusetts (2006)Google Scholar
  11. He, C., Li, P., Cheng, J., Li, J., Hao, Z.: Preparation and investigation of Pd/Ti-SBA-15 catalysts for catalytic oxidation of benzene. Environ. Prog. Sustain. Energy 29(4), 435–442 (2010)CrossRefGoogle Scholar
  12. Hossein, S., Mohammad, J.: Thermodynamics, kinetics, and hydrodynamics of mixed salt precipitation in porous media: model development and parameter estimation. Transp. Porous Media 101, 477–505 (2014)CrossRefGoogle Scholar
  13. Hyung, W.L., Jong-Ki, J., Kwang-Eun, J., Chul-Ung, K., Soon-Yong, J., Jeongsik, H., Young-Kwon, P.: Hydroisomerization of n-dodecane over Pt/Y zeolites with different acid characteristics. Chem. Eng. J. 232, 111–117 (2013)CrossRefGoogle Scholar
  14. Jamileh, T., Gregory, P.K., Alan, L.C.: Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. J. Mol. Catal. A. 358, 79–88 (2012)CrossRefGoogle Scholar
  15. Ji, L., Lin, J., Zeng, H.C.: Metal-support interactions in Co/AlâOâ catalysts: a comparative study on reactivity of support. J. Phys. Chem. B. 104, 1783–1790 (2000)Google Scholar
  16. Jiao, L., Regalbuto, J.R.: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II.Mesoporous silica SBA-15. J. Catal. 260, 342–350 (2008)CrossRefGoogle Scholar
  17. John, N., Kuhn, W.H., Chia-Kuang, T., Yawen, Z., Somorjai, G.A.: Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008)CrossRefGoogle Scholar
  18. Karthikeyan, D., Lingappan, N., Sivasankar, B.: Hydroisomerisation of n-octane over bifunctional Ni-Pd/HY zeolite catalysts. Ind. Eng. Chem. Res. 47, 6538–6546 (2008)Google Scholar
  19. Kruk, M., Jaroniec, M., Sayari, A.: Characterization of high-quality MCM-48 and SBA-1 mesoporoussilicas. Chem. Mater. 11, 492–500 (1999)CrossRefGoogle Scholar
  20. Lebens, P.J., Kapteijn, F., Sie, S.T., Moulijn, J.A.: Potentials of internally finned monoliths as a packing for multifunctional reactors. Chem. Eng. Sci. 54(10), 1359–1365 (1999)CrossRefGoogle Scholar
  21. Li, X., Liu, X., Ma, Y., Li, M., Zhao, J., Xin, H., Zhang, L., Yang, Y., Li, C., Yang, Q.: Engineering the formation of secondary building blocks within the hollow interiors. Adv. Mater. 24, 1424–1428 (2012)CrossRefGoogle Scholar
  22. Martins, A., Silva, J.M., Ribeiro, F.R., Ribeiro, M.F.: Hydroisomerization of \(n\)-hexane over Pt-Ni/HBEA using catalysts prepared by different methods. Catal. Lett. 109, 83–87 (2006)CrossRefGoogle Scholar
  23. Neamtua, M., ahariab, C., Catrinescub, C., Yedilera, M., acoveanub, M.: ettrupa, Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL, Appl. Catal. B. 48(4), 287–294 (2004)CrossRefGoogle Scholar
  24. Ping, L., Yue, Y., Xingguang, Z., Jun, W.: Rare earth metals ion-exchanged beta-zeolites as supports of Pt catalysts for hydroisomerisation of n-C7. Ch. J. Chem. Eng. 19, 278–284 (2011)Google Scholar
  25. Setiabudi, H.D., Jalil, A.A., Triwahyono, S., Kamarudin, N.H.N., Jusoh, R.: Ir/Pt HZSM5 for n-pentane isomerization: effect of Si/Al ratio and reaction optimization by response surface methodology. Chem. Eng. J. 217, 300–309 (2013)CrossRefGoogle Scholar
  26. Shuangquan, H., Dapeng, L., Lusi, L., Zhen, G., Yuanting, C., Armando, B., Yanhui, Y.: Highly selective 1-heptene isomerization over vanadium grafted mesoporous molecular sieve catalysts. Chem. Eng. J. 165, 916–923 (2010)CrossRefGoogle Scholar
  27. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Galen, D.: Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Talib M. N. Albayati
    • 1
    Email author
  • Sophie E. Wilkinson
    • 2
  • Arthur A. Garforth
    • 2
  • Aidan M. Doyle
    • 3
  1. 1.Department of Chemical EngineeringUniversity of TechnologyBaghdadIraq
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  3. 3.Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterUK

Personalised recommendations