Skip to main content
Log in

Spontaneous Inertial Imbibition in Porous Media Using a Fractal Representation of Pore Wall Rugosity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Acronal\(^{\textregistered }\) SA latex, S360D, BASF, Ludwigshafen, Germany

  2. Mangin, P., Mandelbrot, B. and coworkers, personal communication

References

  • Bell, J.M., Cameron, F.K.: The flow of liquids through capillary spaces. J. Phys. Chem. 10, 658–674 (1906)

    Article  Google Scholar 

  • Bico, J., Thiele, U., Quéré, D.: Wetting of textured surfaces. Colloids Surf. A 206, 41–46 (2002)

    Article  Google Scholar 

  • Bosanquet, C.H.: On the flow of liquids into capillary tubes. Philos. Mag. 6(45), 525–531 (1923)

    Article  Google Scholar 

  • Cai, J.C., Hu, X.Y., Standnes, D.C., You, L.J.: An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf. A 414, 228–233 (2012)

    Article  Google Scholar 

  • Chibowski, E., Holysz, L.: On the use of Washburn’s equation for contact angle determination. J. Adhes. Sci. Technol. 11(10), 1289–1301 (1997)

    Article  Google Scholar 

  • Dathe, A., Thullner, M.: The relationship between fractal properties of solid matric and pore space in porous media. Geoderma 124, 279–290 (2005)

    Article  Google Scholar 

  • Dimitrov, D.I., Milchev, A., Binder, K.: Capillary rise in nanopores: molecular dynamics evidence for the Lucas–Washburn equation. Phys. Rev. Lett. 99(3), 054501-1-4 (2007)

    Google Scholar 

  • Gane, P.A.C., Schoelkopf, J., Spielmann, D.C., Matthews, G.P., Ridgway, C.J.: Fluid transport into porous coating structures: some novel findings. Tappi J. 83(5), 77–78 (2000)

    Google Scholar 

  • Gane, P.A.C., Ridgway, C.J., Schoelkopf, J.: Absorption rate and volume dependency on the complexity of porous network structures. Transp. Porous Media 54(1), 79–106 (2004)

    Article  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Absorption, Surface Area and Porosity. Academic press, London (1982)

    Google Scholar 

  • Hammecker, C., Jeannette, D.: Modelling the capillary imbibition kinetics in sedimentary rocks: role of petrographical features. Transp. Porous Media 17(3), 285–303 (1994)

    Article  Google Scholar 

  • Kohonen, M.M., Christenson, H.K.: Capillary condensation of water between rinsed mica surfaces. Langmuir 16, 7285–7288 (2000)

    Article  Google Scholar 

  • Letelier, M.F., Leutheusser, H.J.: Refined mathematical analysis of the capillary penetration problem. J. Colloid Interface Sci. 72, 465–470 (1979)

    Article  Google Scholar 

  • Leventis, A., Verganelakis, D.A., Halse, M.R., Webber, J.B., Strange, J.H.: Capillary imbibition and pore characterization in cement pastes. Transp. Porous Media 39(2), 143–157 (2000)

    Article  Google Scholar 

  • Levine, S., Lowndes, J., Watson, E.J., Neale, G.: A theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel. J. Colloid Interface Sci. 73, 136–151 (1980)

    Article  Google Scholar 

  • Li, K.W.: More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hydrol. 111(1–4), 13–24 (2010)

    Article  Google Scholar 

  • Liu, G., Zhang, M., Ridgway, C.J., Gane, P.A.C.: Pore wall rugosity: the role of extended wetting contact line length during spontaneous liquid imbibition in porous media. Colloids Surf. A 443, 286–295 (2014)

    Article  Google Scholar 

  • Lucas, R.: Ueber das Zeitgesetz des kapillaren Aufstiegs von Fluessigkeiten. Kolloid Zeitschrift 23, 15–22 (1918)

    Article  Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature, pp. 32 and 48–49. W. H. Freeman, New York (1983)

  • Onda, T., Shibuichi, S., Satoh, N., Tsujii, K.: Super-water-repellent fractal surfaces. Langmuir 12(9), 2125–2127 (1996)

    Article  Google Scholar 

  • Ostwald, W.: Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten und über die Beziehungen desselben zur chemischen Konstitution der letzteren. Kolloid-Zeitschrift, Suppl.-Heft II, 2, 20–49 (1908)

  • Perrier, E., Bird, N., Rieu, M.: Generalizing the fractal model of soil structure: the pore-solid fractal approach. Geoderma 88, 137–164 (1999)

    Article  Google Scholar 

  • Perrier, E., Taequis, A.M., Dathe, A.: A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 134, 284–294 (2006)

    Article  Google Scholar 

  • Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)

    Article  Google Scholar 

  • Rabinovich, Y.I., Adler, J.J., Esayanur, M.S., Rajiv, A.A., Singh, K., Moudgil, B.M.: Capillary forces between surfaces with nanoscale roughness. Adv. Colloid Interface Sci. 96, 213–230 (2002)

    Article  Google Scholar 

  • Rideal, E.K.: On the flow of liquids under capillary pressure. Philos. Mag. Ser. 6(44), 1152–1159 (1922)

    Article  Google Scholar 

  • Ridgway, C.J., Gane, P.A.C.: Controlling the absorption dynamic of water-based ink into porous pigmented coating structures to enhance print performance. Nordic Pulp Pap. Res. J. 17(2), 119–129 (2002)

    Article  Google Scholar 

  • Ridgway, C.J., Schoelkopf, J., Matthews, G.P., Gane, P.A.C., James, P.W.: The effects of void geometry and contact angle on the absorption of liquids into porous calcium carbonate structures. J. Colloid Interface Sci. 239(2), 417–431 (2001)

    Article  Google Scholar 

  • Schoelkopf, J., Gane, P.A.C., Ridgway, C.J., Matthews, G.P.: Influence of inertia on liquid absorption into paper coating structures. Nordic Pulp Pap. Res. J. 15(5), 422–430 (2000)

    Article  Google Scholar 

  • Schoelkopf, J., Gane, P.A.C., Ridgway, C.J., Matthews, G.P.: Practical observation of deviation from Lucas–Washburn scaling in porous media. Colloid Surf. A 206(1–3), 445–454 (2002)

  • Schoelkopf, J., Gantenbein, D., Dukhin, A.S., Goez, P.J., Gane, P.A.C.: Novel particle size characterization of coating pigments: comparing acoustic spectroscopy with laser light scattering and sedimentation techniques. In: Tappi 10th Advanced Coating Fundamentals Symposium, Montreal (2008)

  • Stukan, M.R., Ligneul, P., Crawhaw, J.P., Boek, E.S.: Spontaneous imbibition in nanopores of different roughness and wettability. Langmuir 26(16), 13342–13352 (2010)

    Article  Google Scholar 

  • Szekely, J., Neumann, A.W., Chuang, Y.K.: The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci. 35, 273–278 (1971)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of fluid flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  • Yu, B.M., Li, J.H.: Some fractal characters of porous media. Fractals 9(3), 365–372 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Dr. Philip Gerstner, formerly of Aalto University, for providing the sample tablet formed formulations, and to Dr. Carlo Bertinetto, Aalto University, for his suggestions for the design of the matching algorithm of the fractal structure in MatLab. We also acknowledge the Scientific Research Program Funded by the Foundation (No. 201309) of Tianjin Key Laboratory of Pulp & Paper (Tianjin University of Science & Technology), P. R. China, supported by Shaanxi Provincial Education Department (Program No. 2014JK0636) and by the Research Projects of the Provincial Key Laboratory of Science and Technology Department of Shaanxi Province (2011HBSZS014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhang, M., Ridgway, C. et al. Spontaneous Inertial Imbibition in Porous Media Using a Fractal Representation of Pore Wall Rugosity. Transp Porous Med 104, 231–251 (2014). https://doi.org/10.1007/s11242-014-0331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0331-6

Keywords

Navigation