Skip to main content
Log in

Effects of Anisotropy and Drying Air Parameters on Drying of Deformable Porous Media Hydro-Dynamically and Thermally Anisotropic

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The purpose of this work was to investigate numerically the drying of saturated deformable porous media. The considered sample is a rectangular porous plate which assumed to be both hydro-dynamically and thermally anisotropic, while the mechanical behavior of the sample is supposed to be isotropic. All walls of the plate are subjected to a convective heat flux. Moreover, the top and bottom walls are allowed the mass transfer. The Darcy–Brinkman extended model was used as the momentum balance equation for the liquid and solid phases. The energy balance equation is based on the local thermodynamic equilibrium assumption between the both phases. The lattice Boltzmann method is used to solve the governing differential equation system. A comprehensive analysis of the effect of anisotropy and the drying air parameters on macroscopic fields is investigated throughout this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\vec {c}_k \) :

Microscopic velocity

\(\hbox {C}_{\mathrm{p}}\) :

Specific heat

\(\hbox {c}_{\mathrm{s}}\) :

Sound speed

e:

Thickness

\(E\) :

Young’s modulus

\(\hbox {f}_{\mathrm{k}}, \hbox {d}_{\mathrm{k}}\) :

Dynamic distributions functions

\(\hbox {f}_{\mathrm{k}}^{\mathrm{eq}}, \hbox {d}_{\mathrm{k}}^{\mathrm{eq}}\) :

Dynamic equilibrium distributions functions

\(\hbox {F}_{\mathrm{k}}, \hbox {D}_{\mathrm{k}}\) :

External forces

\(F_m\) :

Mass flux

\(\hbox {g}_{\mathrm{k}}\) :

Temperature distribution function

\(\hbox {g}_{\mathrm{k}}^{\mathrm{eq}}\) :

Temperature equilibrium distribution function

\(h_k\) :

Intermediate distribution function

\(h_k^{eq}\) :

Intermediate equilibrium distribution function

\(\overline{h_k}\) :

Pressure distribution function

\(h_m\) :

Mass exchange coefficient

\(k_s^*\) :

Conductivity ratio

\(k_{s x}, k_{s y}\) :

Conductivities along principal axes

\(\overline{\overline{k}}\) :

Thermal conductivity tensor

\(K^{*}\) :

Permeability ratio

\(K_x, K_y\) :

Permeabilities along principal axes

\(\overline{\overline{K}}\) :

Second-order permeability tensor

L:

Length

\(\vec {n}\) :

Unit vector

P:

Pressure

\(P_l^{*}=\frac{\prec p_l^l \succ -p_{atm}}{E}\) :

Dimensionless liquid pressure

HR:

Air moisture

t:

Time

\(Time=\frac{tU}{e}\) :

Dimensionless time

T:

Temperature

\(T^{*}=\frac{\prec T\succ -T_0}{T_\infty -T_0}\) :

Dimensionless temperature

\(\hbox {U} = \hbox {V}_{\mathrm{a}}\) :

Reference velocity

\(\vec {u}\) :

Displacement vector

\(\vec {V}_l^*=\frac{\prec \vec {v}_l^l \succ }{U}\) :

Dimensionless solid deformation velocity

\(\vec {V}_s^*=\frac{\prec \vec {v}_s^s \succ }{U}\) :

Dimensionless liquid velocity

W:

Vapor concentration

\(X=\frac{x}{e}, Y=\frac{y}{e}\) :

Dimensionless space coordinates (orthonormal system)

\(\Delta H_v\) :

Vaporization enthalpy

\(\varepsilon \) :

Volumetric fraction

\(\mu \) :

Dynamic viscosity

\(\tau _s\) :

Solid stress tensors

\(\overline{e} \) :

Solid deformation tensor

\(\upsilon \) :

Poisson’s coefficient

\({\lambda }', {\mu }'\) :

Lamé constants

\(\Omega \) :

collision operator

\(\omega _k \) :

Weight coefficient

\(\tau \) :

Relaxation time

\(\rho \) :

Macroscopic density

\(\Delta x, \Delta y\) :

Spatial step

\(\Delta t\) :

Time step

\(\vec {\nabla }\) :

Gradient

\(\vec {\nabla }.\) :

Divergence

\(\theta \) :

Orientation angle

a:

Air

cap:

Capillary

i:

Space direction

k:

Velocity discretized direction

l:

Liquid

s:

Solid

surf:

Surface

\(\infty \) :

Ambient

References

  • Alemrajabi, A.A., Rezaee, F., Mirhosseini, M., Esehaghbeygi, A.: Comparative evaluation of the effects of electro hydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process. Dry. Technol. 30(1), 88–96 (2012)

    Article  Google Scholar 

  • Arrieche, L.S., Sartori, D.J.M.: Fluid flow effect and mechanical interactions during drying of a deformable food model. Dry. Technol. 26(1), 54–63 (2007)

    Article  Google Scholar 

  • Balbay, A., Ömer, Ş., Karabatak, M.: An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using artificial neural network. Dry. Technol. 29(14), 1685–1696 (2011)

    Article  Google Scholar 

  • Barchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1969)

    Google Scholar 

  • Belova, I.V., Veyhl, C., Fiedler, T., Murch, G.E.: Analysis of anisotropic behavior of thermal conductivity in cellular metals. Scripta Materialia 65, 436–439 (2011)

    Article  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, K.: A model for collision process in gases I. Small amplitude process in charged and neutral one-component systems, physical. Review 94(3), 511–525 (1954)

    Article  Google Scholar 

  • Cai, J., Huai, X.: Study on fluid-solid coupling heat transfer in fractal porous medium by lattice Boltzmann method. Appl. Therm. Eng. 30, 715–723 (2010)

    Article  Google Scholar 

  • Chemkhi, S., Jomaa, W., Zagrouba, F.: Application of a coupled thermo-hydro-mechanical model to simulate the drying of non saturated porous media. Dry. Technol. 27(7), 842–850 (2009)

    Article  Google Scholar 

  • Chua, K.J., Chou, S.K., Ho, J.C., Hawlader, M.N.A.: Heat pump drying: recent developments and future trends. Dry. Technol. 20(8), 1579–1610 (2002)

    Article  Google Scholar 

  • Guo, Z., Zhoa, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304-1–036304-9 (2002)

    Article  Google Scholar 

  • Guo, Z., Zhoa, T.S.: A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Trans. Part B 47, 157–177 (2005)

    Article  Google Scholar 

  • Han, B., Yu, J., Meng, H.: Lattice Boltzmann simulations of liquid droplets development and interaction in a gas channel of a proton exchange membrane fuel cell. J. Power Sour. 202, 175–183 (2012)

    Article  Google Scholar 

  • Li, Q., Zhao, K., Xuan, Y.M.: Simulation of flow and heat transfer with evaporation in a porous wick of a CPL evaporator on pore scale by lattice Boltzmann method. Int. J. Heat Mass Trans. 54, 2890–2901 (2011)

    Article  Google Scholar 

  • Ljung, A.L., Lundström, T.S., Marjavaara, B.D., Tano, K.: Influence of air humidity on drying of individual iron ore pellets. Dry. Technol. 29(9), 1101–1111 (2011)

    Article  Google Scholar 

  • Mihoubi, D., Bellagi, A.: A stress generated during drying of saturated porous media. Transp. Porous Media 80, 519–536 (2009)

    Article  Google Scholar 

  • Mobedi, M., Cekmer, O., Pop, I.: Forced convection heat transfer inside an anisotropic porous channel with oblique principal axes: effect of viscous dissipation. Int. J. Therm. Sci. 49, 1984–1993 (2010)

    Article  Google Scholar 

  • Mohamad, A.A., Kuzmin, A.: Critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53, 990–996 (2010)

    Article  Google Scholar 

  • Mohamed, A.A.: Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes. Springer-Verlag Inc., London (2011)

    Google Scholar 

  • Musielak, G., Tomkowiak, A., Kieca, A.: Influence of drying conditions on mechanical strength of material. Dry. Technol. 27(8–9), 888–893 (2009)

    Article  Google Scholar 

  • Mussa, M.A., Abdullah, S., Nor Azwadi, C.S., Muhamad, N.: Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Comput. Fluids 44, 162–168 (2011)

    Article  Google Scholar 

  • Pourcel, F., Jomaa, W., Puiggali, J.R., Rouleau, L.: Criterion for crack initiation during drying: alumina porous ceramic strength improvement. Powder Technol. 172, 120–127 (2007)

    Article  Google Scholar 

  • Putranto, A., Chen, X.D.: Modeling intermittent drying of wood under rapidly varying temperature and humidity conditions with the lumped reaction engineering approach (L-REA). Dry. Technol. 30(14), 1658–1665 (2012)

    Article  Google Scholar 

  • Sturm, B., Hofacker, W.C., Hensel, O.: Optimizing the drying parameters for hot-air-dried apples. Dry. Technol. 30(14), 1570–1582 (2012)

    Article  Google Scholar 

  • Supmoon, N., Noomhorm, A.: Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Dry. Technol. 31(1), 24–31 (2013)

    Article  Google Scholar 

  • Taehun, L., Ching-Long, L., Lea-Der, C.: A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame. J. Comput. Phys. 215, 133–152 (2006)

    Article  Google Scholar 

  • Wen, P.H., Hon, Y.C., Wang, W.: Dynamic responses of shear flows over a deformable porous surface layer in a cylindrical tube. Appl. Math. Model. 33, 423–436 (2009)

    Article  Google Scholar 

  • Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Trans. 13, 119–203 (1977)

    Article  Google Scholar 

  • Zhao, K., Xuan, Y., Li, Q.: Investigation on the mechanism of convective heat and mass transfer with double diffusive effect inside a complex porous medium using lattice Boltzmann method. Chin. Sci. Bull. 55(26), 3051–3059 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dhahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Abrach, H., Dhahri, H. & Mhimid, A. Effects of Anisotropy and Drying Air Parameters on Drying of Deformable Porous Media Hydro-Dynamically and Thermally Anisotropic. Transp Porous Med 104, 181–203 (2014). https://doi.org/10.1007/s11242-014-0327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0327-2

Keywords

Navigation