Skip to main content
Log in

Prediction of Transport Properties of Deformed Natural Fracture Through Micro-scale Hydro-mechanical Modeling

Micro-scale Hydro-mechanical Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

To study the effect of fracture properties on mechanical and fluid flow behavior of fractured rocks, we developed a micro-scale hydro-mechanical model. Modeling grains and studying their interactions are used to predict the mechanical response of digital rock samples. Fluid flow behavior is obtained through a realistic network model of the pore space in the compacted assembly. As a result of grain deformation and micro-crack development in a rock sample, the geometric description of the complex pore structure is regenerated to predict fluid flow performance of the rock sample using a dynamic pore network model. In our numerical model, the first step consisted of constructing a Berea sandstone sample. Then, fractures with different properties such as orientation, dilation angle, roughness, and cementing materials are introduced. Mechanical properties of the fractured sample are measured as functions of deformation by performing numerical triaxial tests. Applying a dynamic pore network provides a tool to investigate the important role of fracture parameters on transport behavior. Our results show that shearing along the fracture dilates the sample, and increases its permeability, which is a complex function of fracture mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Busaidi, A., Hazzard, J., Young, R.: Distinct element modeling of hydraulically fractured Lac Du Bonnet granite. J. Geophys. Res. Solid Earth. 110(B6) (2005)

  • Bakke, S., Oren, P.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. Spe J. 2(2), 136–149 (1997)

    Article  Google Scholar 

  • Baria, R., Michelet, S., Baumgärtner, J., Dyer, B., Gerard, A., Nicholls, J., Hettkamp, T., Teza, D., Soma, N., Asanuma, H., et al.: Microseismic monitoring of the worlds largest potential HDR reservoir. In: Proceedings, 29th Workshop on Geothermal Reservoir Engineering (2004)

  • Bruno, M.: Micromechanics of stress-induced permeability anisotropy and damage in sedimentary rock. Mech. Mater. 18(1), 31–48 (1994)

    Article  Google Scholar 

  • Bryant, S., Cade, C., Mellor, D.: Permeability prediction from geologic models. AAPG Bull. 77(8), 1338–1350 (1993a)

    Google Scholar 

  • Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media 11(1), 53–70 (1993b)

    Article  Google Scholar 

  • Bryant, S.L., Mellor, D.W., Cade, C.A.: Physically representative network models of transport in porous media. AIChE J. 39(3), 387–396 (1993c)

    Article  Google Scholar 

  • Cipolla, C., Warpinski, N., Mayerhofer, M.: Hydraulic fracture complexity: diagnosis, remediation, and explotation. In: SPE Asia Pacific Oil and Gas Conference and Exhibition (2008)

  • Cundall, P.: The incorporation of fluid coupling into PFC (1999)

  • Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Evans, K., Moriya, H., Niitsuma, H., Jones, R., Phillips, W., Genter, A., Sausse, J., Jung, R., Baria, R.: Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site. Geophys. J. Int. 160(1), 389–412 (2005)

    Article  Google Scholar 

  • Ghassemi, A., Tarasovs, S.: Three-dimensional modeling of injection induced thermal stresses. In: Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS) (2004)

  • Ghassemi, A., Tarasovs, S.: A three-dimensional numerical study of fracture slip due to cold water injection in enhanced geothermal reservoirs. In: Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS) (2006)

  • Guodong, J., Patzek, T., Silin, D.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock. In: SPE Annual Technical Conference and Exhibition (2004)

  • Hazzard, J.F., Young, R.P., Maxwell, S.: Micromechanical modeling of cracking and failure in brittle rocks. J. Geophys. Res. Solid Earth 105(B7), 16,683–16,697 (2000)

    Article  Google Scholar 

  • Hossain, M., Rahman, M., Rahman, S.: Application of HDR stimulation technology to develop tight gas reservoirs. In: SPE Asia Pacific Oil and Gas Conference and Exhibition (2000)

  • Hossain, M.M., Rahman, M., Rahman, S.: A shear dilation stimulation model for production enhancement from naturally fractured reservoirs. Spe J. 7(2), 183–195 (2002)

    Article  Google Scholar 

  • Huo, D., Gong, B.: Discrete modeling and simulation on potential leakage through fractures in \({\rm CO}_{2}\) sequestration. In: SPE Annual Technical Conference and Exhibition (2010)

  • Ito, T., Hayashi, K.: Role of stress-controlled flow pathways in hdr geothermal reservoirs. In: Thermo-Hydro-Mechanical Coupling in Fractured Rock, pp. 1103–1124. Springer, Berlin (2003)

  • Jaeger, J.C., Cook, N.G., Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley, Oxford (2009)

    Google Scholar 

  • Li, L., Holt, R.: Particle scale reservoir mechanics. Oil Gas Sci. Technol. 57(5), 525–538 (2002)

    Article  Google Scholar 

  • Liu, X., Gong, B., Huo, D.: Numerical simulation on \({\rm CO}_{2}\) sequestration in saline formations with natural or hydraulic fractures using a discrete modeling approach. In: Canadian Unconventional Resources and International Petroleum Conference (2010)

  • Mandl, G.: Rock Joints: The Mechanical Genesis. Springer, Berlin (2005)

    Google Scholar 

  • Manwart, C., Hilfer, R.: Numerical simulation of creeping fluid flow in reconstruction models of porous media. Phys. A Stat. Mech. Appl. 314(1), 706–713 (2002)

    Article  Google Scholar 

  • Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E 66(1), 016702 (2002)

    Article  Google Scholar 

  • Mas Ivars, D., Potyondy, D., Pierce, M., Cundall, P.: The smooth-joint contact model. In: Proceedings of WCCM8-ECCOMAS (2008)

  • Maxwell, S., Urbancic, T., Steinsberger, N., Zinno, R.: Microseismic imaging of hydraulic fracture complexity in the Barnett shale. In: SPE Annual Technical Conference and Exhibition (2002)

  • Maxwell, S., Rutledge, J., Jones, R., Fehler, M.: Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75(5), 75A129–75A137 (2010)

    Article  Google Scholar 

  • Maxwell, S.C.: What does microseismic tell us about hydraulic fracture deformation. CSEG Rec. 36(8), 31–45 (2011)

    Google Scholar 

  • Mayerhofer, M., Lolon, E., Warpinski, N., Cipolla, C., Walser, D., Rightmire, C.: What is stimulated reservoir volume? SPE Prod. Oper. 25(1), 89–98 (2010)

    Google Scholar 

  • Min, K.B., Rutqvist, J., Tsang, C.F., Jing, L.: Stress-dependent permeability of fractured rock masses: a numerical study. Int. J. Rock Mech. Min. Sci. 41(7), 1191–1210 (2004)

    Article  Google Scholar 

  • Olsson, R., Barton, N.: An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 38(3), 317–329 (2001)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(4), 324–336 (1998)

    Article  Google Scholar 

  • O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Taylor & Francis, New York (2011)

    Google Scholar 

  • Paterson, M.S.: Experimental Rock Deformation—the Brittle Field. Springer, Berlin (2005)

    Google Scholar 

  • Phillips, W.S., House, L.S., Fehler, M.C.: Detailed joint structure in a geothermal reservoir from studies of induced microearthquake clusters. J. Geophys. Res. 102(B6), 11–11745 (1997)

    Google Scholar 

  • Potyondy, D., Cundall, P.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  • Rahman, M., Hossain, M.M., Rahman, S.: A shear-dilation-based model for evaluation of hydraulically stimulated naturally fractured reservoirs. Int. J. Numer. Anal. Methods Geomech. 26(5), 469–497 (2002)

    Article  Google Scholar 

  • Raziperchikolaee, S., Alvarado, V., Yin, S.: Effect of hydraulic fracturing on long-term storage of \({\rm CO}_{2}\) in stimulated saline aquifers. Appl. Energy. (2012)

  • Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11(1), 7–40 (2003)

    Article  Google Scholar 

  • Rutqvist, J., Wu, Y.S., Tsang, C.F., Bodvarsson, G.: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39(4), 429–442 (2002)

    Article  Google Scholar 

  • Sasaki, S.: Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics 289(1), 171–188 (1998)

    Article  Google Scholar 

  • Scesi, L., Gattinoni, P.: Roughness control on hydraulic conductivity in fractured rocks. Hydrogeol. J. 15(2), 201–211 (2007)

    Article  Google Scholar 

  • Scholtès, L., Donzé, F.V.: A dem model for soft and hard rocks: role of grain interlocking on strength. J. Mech. Phys. Solids 61(2), 352–369 (2013)

    Article  Google Scholar 

  • Shimizu, H., Murata, S., Ishida, T.: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 48(5), 712–727 (2011)

    Article  Google Scholar 

  • Valvatne, PH.: Predictive pore-scale modelling of multiphase flow. PhD thesis, Imperial College London (2004)

  • Vogel, H.J., Tölke, J., Schulz, V., Krafczyk, M., Roth, K.: Comparison of a Lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure–saturation relationships. Vadose Zone J. 4(2), 380–388 (2005)

    Article  Google Scholar 

  • Warpinski, N., Du, J., Zimmer, U.: Measurements of hydraulic-fracture-induced seismicity in gas shales. In: SPE Hydraulic Fracturing Technology Conference (2012)

  • Weidler, R., Gerard, A., Baria, R., Baumgärtner, J., Jung, R.: Hydraulic and micro-seismic results of a massive stimulation test at 5 km depth at the European Hot-Dry-Rock test site Soultz, France. In: Proceedings 27th Workshop on Geothermal Reservoir, Engineering, pp 95–100 (2002)

  • Wong, T.F., David, C., Zhu, W.: The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J. Geophys. Res. Solid Earth 102(B2), 3009–3025 (1997)

    Article  Google Scholar 

  • Zhang, X., Sanderson, D.J.: Effects of stress on the two-dimensional permeability tensor of natural fracture networks. Geophys. J. Int. 125(3), 912–924 (1996)

    Article  Google Scholar 

  • Zhao, X., Young, R.: Numerical simulation of seismicity induced by hydraulic fracturing in naturally fractured reservoirs. In: SPE Annual Technical Conference and Exhibition (2009)

  • Zhou, X., Ghassemi, A., Cheng, ADX.: A three-dimensional poroelastic model for water injection into a geothermal reservoir. In: The 42nd US Rock Mechanics Symposium (USRMS) (2008)

  • Zhu, W., Wong, Tf: The transition from brittle faulting to cataclastic flow: permeability evolution. J. Geophys. Res. Solid Earth (1978–2012) 102(B2), 3027–3041 (1997)

    Article  Google Scholar 

  • Zimmermann, G., Reinicke, A.: Hydraulic stimulation of a deep sandstone reservoir to develop an enhanced geothermal system: Laboratory and field experiments. Geothermics 39(1), 70–77 (2010)

    Article  Google Scholar 

  • Zoback, M.D.: Reservoir Geomechanics. Cambridge University Press, New York (2010)

    Google Scholar 

Download references

Acknowledgments

Support of the University of Wyoming (UW) and UW School of Energy Resources is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raziperchikolaee, S., Alvarado, V. & Yin, S. Prediction of Transport Properties of Deformed Natural Fracture Through Micro-scale Hydro-mechanical Modeling. Transp Porous Med 104, 1–23 (2014). https://doi.org/10.1007/s11242-014-0317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0317-4

Keywords

Navigation