Skip to main content
Log in

Pore-Scale Lattice Boltzmann Modeling and 4D X-ray Computed Microtomography Imaging of Fracture-Matrix Fluid Transfer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present sequential X-ray computed microtomography (CMT) images of matrix drainage in a fractured, sintered glass-granule-pack. Sequential (4D) CMT imaging captured the capillary-dominated displacement of the oil-occupied matrix by the surfactant-brine-occupied fracture at the pore scale. The sintered glass-granule-pack was designed to have minimal pore space beyond the resolution of CMT imaging, ensuring that the pore space of the matrix connected to the fracture could be captured in its entirety. This provided an opportunity to validate the increasingly common lattice Boltzmann modeling technique against experimental images at the pore scale. Although the surfactant was found to alter the wettability of the originally weakly oil-wet glass to water-wet, the fracture-matrix fluid transfer is found to be a drainage process, showing minimal counter-current migration of the initial wetting phase (decane). The LB simulations were found to closely match experimental rates of fracture-matrix fluid transfer, and trends in the saturation profiles, but not the irreducible wetting-phase saturation behind the flooding front. The underestimation of the irreducible wetting phase saturation suggests that finer image and lattice resolutions than those reported here may be required for accurate prediction of some macroscale multiphase flow properties, at a sizable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Raoush, R.I.: Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Environ. Sci. Technol. 43, 4796–4801 (2009)

    Article  Google Scholar 

  • Brusseau, M.L., Peng, S., Schnaar, G., Constanza-Robinson, M.S.: Relationships among air–water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resour. Res. 42, W03501 (2006)

    Google Scholar 

  • Brusseau, M.L., Janousek, H., Murao, A., Schnaar, G.: Synchrotron X-ray microtomography and interfacial partitioning tracer test measurements of NAPL–water interfacial areas. Water Resour. Res. 44, W01411 (2008)

    Article  Google Scholar 

  • Buchgraber, M., Al-Dossary, M., Ross, C.M., Kovscek, A.R.: Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow. J. Petrol. Sci. Eng. 86–87, 27–38 (2012)

    Article  Google Scholar 

  • Coles, M.E., Hazlett, R.D., Spanne, P., Soll, W.E., Muegge, E.L., Jones, K.W.: Pore level imaging of fluid transport using synchrotron X-ray microtomography. J. Petrol. Sci. Eng. 19, 55–63 (1998)

    Article  Google Scholar 

  • Constanza-Robinson, M.S., Harrold, K.H., Lieb-Lappen, R.M.: X-ray microtomography determination of air–water interfacial area–water saturation relationships in sandy porous media. Environ. Sci. Technol. 42, 2949–2956 (2008)

    Article  Google Scholar 

  • Coronel, L., Jernot, J.P., Osterstock, F.: Microstructure and mechanical properties of sintered glass. J. Mater. Sci. 25, 4866–4872 (1990)

    Article  Google Scholar 

  • Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L.: Pore-scale characteristics of multiphase flow in porous media: a comparison of air–water and oil–water experiments. Adv. Water Resour. 29, 227–238 (2006)

    Article  Google Scholar 

  • Dehghan, A.A., Ghorbanizadeh, S., Ayatollahi, Sh: Investigating the fracture network effects on sweep efficiency during WAG injection process. Transp. Porous Med. 93, 577–595 (2012)

    Article  Google Scholar 

  • Er, V., Babadagli, T., Xu, Z.: Pore-scale investigation of the matrix–fracture interaction during \(\text{ CO }_{2}\) injection in naturally fractured oil reservoirs. Energy Fuels 24, 1421–1430 (2010)

    Article  Google Scholar 

  • Flowkit Ltd.: Palabos. http://www.palabos.org/ (2012)

  • Ghassemi, A., Pak, A.: Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method. J. Petrol. Sci. Eng. 77, 135–145 (2011)

    Article  Google Scholar 

  • Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53, 1908–1913 (2010)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E 77, 066311 (2008)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Experiment and visual analysis of co- and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities. J. Petrol. Sci. Eng. 70, 214–228 (2011)

    Article  Google Scholar 

  • He, X.Y., Zuo, Q.S., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87(1–2), 115–136 (1997)

    Article  Google Scholar 

  • Huang, H., Thorne, D.T., Schaap, M.G., Sukop, M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)

    Article  Google Scholar 

  • Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual \(\text{ CO }_{2}\) imaged with X-ray microtomography. Geophys. Res. Lett. 38, L21403 (2011)

    Article  Google Scholar 

  • Karadimitriou, N.K., Hassanizadeh, S.M.: A review of micromodels and their use in two-phase flow studies. Vadose Zone J. 11(3), (2012)

  • Karpyn, Z.T., Grader, A.S., Halleck, P.M.: Visualization of fluid occupancy in a rough fracture using microtomography. J. Colloid Interface Sci. 307(1), 181–187 (2007)

    Article  Google Scholar 

  • Keller, A.A., Roberts, P.V., Blunt, M.J.: Effect of fracture aperture variations on the dispersion of contaminants. Water Resour. Res. 35(1), 55–63 (1999)

    Article  Google Scholar 

  • Ketcham, R.A., Slottke, D.T., Sharp Jr, J.M.: Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere 6(5), 499–514 (2010)

    Article  Google Scholar 

  • Kumar, M., Fogden, A., Senden, T., Knackstedt, M.: Investigation of pore-scale missed wettability. SPE J. 17(1), 20–30 (2012)

    Article  Google Scholar 

  • Landry, C.J., Karpyn, Z.T., Piri, M.: Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs. Geofluids 11, 209–227 (2011)

    Article  Google Scholar 

  • Landry, C.J., Karpyn, Z.T.: Single-phase lattice Boltzmann simulations of pore-scale flow in fractured permeable media. Int. J. Oil Gas Coal Technol. 5(2–3), 182–206 (2012)

    Article  Google Scholar 

  • Lebedeva, E.V., Fogden, A.: Micro-CT and wettability analysis of oil recovery from sandpacks and the effect of waterflood salinity and kaolinite. Energy Fuels 25, 5683–5694 (2011)

    Article  Google Scholar 

  • Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743–750 (1996)

    Article  Google Scholar 

  • Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)

    Google Scholar 

  • Pan, C., Hilpert, M., Miller, C.T.: Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40, W01501 (2004)

    Google Scholar 

  • Porter, M.L., Schaap, M.G., Wildenschild, D.: Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Adv. Water Resour. 32, 1632–1640 (2009)

    Article  Google Scholar 

  • Prodanovic, M., Lindquist, W.B., Seright, R.S.: 3D image-based characterization of fluid displacement in a Berea core. Adv. Water Resour. 30, 214–226 (2007)

    Article  Google Scholar 

  • Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    Article  Google Scholar 

  • Ramstad, T., Oren, P.E., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method. SPE J. 15(4), 917–927 (2010)

    Article  Google Scholar 

  • Ramstad, T., Idowu, N., Nardi, C., Oren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rock. Transp. Porous Med. 94, 487–504 (2012)

    Article  Google Scholar 

  • Rangel-German, E.R., Kovscek, A.R.: A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resour. Res. 43, W03401 (2006)

    Google Scholar 

  • Renard, F., Bernard, D., Desrues, J., Ougier-Simonin, A.: 3D imaging of fracture propagation using synchrotron X-ray microtomography. Earth Planet Sci. Lett. 286, 285–291 (2009)

    Article  Google Scholar 

  • Schaap, M.G., Porter, M.L., Christensen, B.S.B., Wildenschild, D.: Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43, W12S06 (2007)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1819 (1993)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941–2948 (1994)

    Article  Google Scholar 

  • Silin, D., Tomatsu, L., Benson, S.M., Patzek, T.W.: Microtomography and pore-scale modeling of two-phase fluid distribution. Transp. Porous Med. 86, 495–515 (2011)

    Article  Google Scholar 

  • Sukop, M., Thorne, D.T.: Lattice Boltzmann modeling. An introduction for geoscientists and engineers. Springer, Berlin (2006)

    Google Scholar 

  • Sukop, M.C., Huang, H., Chen, L.L., Deo, M.D., Oh, K., Miller, J.D.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys. Rev. E 77, 026710 (2008)

    Article  Google Scholar 

  • Turner, M.L., Knufing, L., Arns, C.H., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Limaye, A., Pinczewski, W.V., Knackstedt, M.A.: Three-dimensional imaging of multiphase flow in porous media. Physica A 339, 166–172 (2004)

    Article  Google Scholar 

  • Wan, J., Tokunaga, T.K., Tsang, C.F., Bodvarsson, G.S.: Improved glass micromodel methods for studies of flow and transport in fractured porous media. Water Resour. Res. 32(7), 1955–1964 (1996)

    Article  Google Scholar 

  • Wennberg, O.P., Rennan, L., Basquet, R.: Computed tomography scan imaging of natural open fractures in a porous rock; geometry and fluid flow. Geophys. Prospect. 57(2), 239–249 (2009)

    Article  Google Scholar 

  • Zdziennicka, A., Szymczyk, K., Janzuk, B.: Correlations between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants. J. Colloid Interface Sci. 340, 243–248 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 0747585. The authors would also like to thank Soheil Saraji of the Department of Chemical and Petroleum Engineering, The University of Wyoming for providing interfacial tension measurements. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Landry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, C.J., Karpyn, Z.T. & Ayala, O. Pore-Scale Lattice Boltzmann Modeling and 4D X-ray Computed Microtomography Imaging of Fracture-Matrix Fluid Transfer. Transp Porous Med 103, 449–468 (2014). https://doi.org/10.1007/s11242-014-0311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0311-x

Keywords

Navigation