Advertisement

Transport in Porous Media

, Volume 102, Issue 2, pp 207–225 | Cite as

Numerical Simulation of Forced Convective Heat Transfer Past a Square Diamond-Shaped Porous Cylinder

  • S. Rashidi
  • M. Bovand
  • I. PopEmail author
  • M. S. Valipour
Article

Abstract

Fluid flow and heat transfer around and through a porous cylinder is an important issue in engineering applications. In this paper a numerical study is carried out for simulating the fluid flow and forced convection heat transfer around and through a square diamond-shaped porous cylinder. The flow is two-dimensional, steady, and laminar. Conservation laws of mass, momentum, and heat transport equations are applied in the clear region and Darcy–Brinkman–Forchheimer model for simulating the flow in the porous medium has been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Reynolds and Darcy numbers are varied within the ranges of \(1<Re<45\) and \(10^{-6}<Da<10^{- 2}\), respectively. The porosity \((\varepsilon )\) is 0.5. This paper presents the effect of Reynolds and Darcy numbers on the flow structure and heat transfer characteristics. Finally, these parameters are compared among solid and porous cylinder. It was found that the drag coefficient decreases and flow separation from the cylinder is delayed with increasing Darcy number. Also the size of the thermal plume decreases by decreasing Darcy number.

Keywords

Porous cylinder Darcy–Brinkman–Forchheimer Separation  Finite volume approach 

List of Symbols

\(c_\mathrm{{p}}\)

Specific heat (J/kg K)

\(C_\mathrm{{D}}\)

Drag coefficient

\(C_\mathrm{{F}}\)

Forchheimer coefficient

\(D\)

Diameter of the cylinder (m)

\(Da\)

Darcy number (=\(K/D^{2}\))

\(F_\mathrm{{d}}\)

Drag force (N)

\(h\)

Heat transfer coefficient (W/m\(^{2}\) K)

\(k\)

Thermal conductivity (W/m K)

\(K\)

Permeability (m\(^{2}\))

\(Nu\)

Nusselt number (=\(hD/k\))

\(Nu_\mathrm{ave}\)

Average Nusselt number

\(P\)

Pressure (Pa)

\(Pe\)

Péclet number (=\(Re\times Pr\))

\(Pr\)

Prandtl number (=\(\nu /\alpha \))

\(q^{\prime \prime \prime }\)

Heat source (W/m\(^{3}\))

\(R_\mathrm{{c}}\)

Thermal conductivity ratio, (=\(k_\mathrm{{eff}}/k_\mathrm{{f}}\))

\(Re\)

Reynolds number (=\(U_{\infty }D/\nu \))

\(t\)

Time (s)

\(T\)

Temperature (K)

\(x,y\)

Rectangular coordinates (m)

\(\overline{x} , \overline{y}\)

Rectangular coordinates for parallel and normal to the surfaces of cylinder (m)

\(u, v\)

Velocity component in \(x\) and \(y\) directions (m s\(^{-1}\))

\(\overline{u} ,\overline{v}\)

Velocity component in \(\overline{x}\) and \(\overline{y}\) directions (m s\(^{-1}\))

Greek Symbols

\(\alpha \)

Thermal diffusivity (m\(^{2}\) s\(^{-1}\))

\(\varepsilon \)

Porosity

\(\mu \)

Dynamic viscosity (kg m\(^{-1}\) s\(^{-1}\))

\(\nu \)

Fluid kinematic viscosity (m\(^{2}\) s\(^{-1}\))

\(\rho \)

Fluid density (kg m\(^{-3}\))

Subscripts

ave

Average

eff

Effective

f

Fluid

p

Pressure force

r

Ratio

s

Solid

w

Wall

\(\infty \)

Free stream

1

Clear fluid domain

2

Porous domain

References

  1. Alazmi, B., Vafai, K.: Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial-conditions. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)CrossRefGoogle Scholar
  2. Bhattacharyya, S., Dhinakaran, S., Khalili, A.: Fluid motion around and through a porous cylinder. Chem. Eng. Sci. 61, 4451–4461 (2006)CrossRefGoogle Scholar
  3. Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R., Demeester, J.: Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov. 1, 447–456 (2002)CrossRefGoogle Scholar
  4. Chen, X.B., Yu, P., Winoto, S.H., Low, H.T.: Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial-conditions. Int. J. Numer. Methods Heat Fluid Flow 18, 635–655 (2008)CrossRefGoogle Scholar
  5. Chen, X.B., Yu, P., Winoto, S.H.: Numerical analysis for the flow past a porous trapezoidal-cylinder based on the stress-jump interfacial-conditions. Int. J. Numer. Methods Heat Fluid Flow 19, 223–241 (2009)CrossRefGoogle Scholar
  6. Dhinakaran, S., Ponmozhi, J.: Heat transfer from a permeable square cylinder to a flowing fluid. Energy Convers. Manag. 52, 2170–2182 (2011)CrossRefGoogle Scholar
  7. Jazebi, F., Rashidi, A.: An automated procedure for selecting project manager in construction firms. J. Civil Eng. Manag. 19, 97–106 (2013)CrossRefGoogle Scholar
  8. Jue, T.C.: Numerical analysis of vortex shedding behind a porous cylinder. Int. J. Numer. Methods Heat Fluid Flow 14, 649–663 (2004)CrossRefGoogle Scholar
  9. Leal, L.G., Acrivos, A.: The effect of base bleed on the steady separated flow past bluff objects. J. Fluid Mech. 39, 735–752 (1970)CrossRefGoogle Scholar
  10. Masliyah, J.H., Polikar, M.: Terminal velocities of porous spheres. Can. J. Chem. Eng. 58, 299–302 (1980)CrossRefGoogle Scholar
  11. Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42, 3373–3385 (1999)CrossRefGoogle Scholar
  12. Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)CrossRefGoogle Scholar
  13. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)Google Scholar
  14. Rashidi, A., Jazebi, F., Brilakis, I.: Neuro-fuzzy genetic system for selection of construction project managers. J. Const. Eng. Manag. 137, 17–29 (2011)CrossRefGoogle Scholar
  15. Rashidi, S., Tamayol, A., Valipour, M.S., Shokri, N.: Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transf. 63, 91–100 (2013a)CrossRefGoogle Scholar
  16. Rashidi, S., Masoodi, R., Bovand, M., Valipour, M.S.: Numerical study of flow around and through a porous diamond cylinder with different apex angles. Int. J. Numer. Methods Heat Fluid Flow (2013b) (accepted)Google Scholar
  17. Tan, H., Pillai, K.M.: Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Comput. Fluids 38, 1118–1131 (2009)CrossRefGoogle Scholar
  18. Tan, H. Chen, X. Pillai, K.M., Papathanasiou, T.D.: Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th International Conference on Flow Processes in Composite Materials (FPCM-9). Montréal (Québec), Canada, 8–10 July, (2008)Google Scholar
  19. Valipour, M.S., Zare Ghadi, A.: Numerical investigation of forced convective heat transfer around and through a porous circular cylinder with internal heat generation. ASME J. Heat Transf. 134 (2012)Google Scholar
  20. Valipour, M.S., Rashidi, S., Masoodi, R.: MHD flow and heat transfer around a solid cylinder wrapped with a porous ring. ASME J. Heat Transf. (2013) (accepted)Google Scholar
  21. White, F.M.: Fluid Mechanics, 6th edn. McGraw Hill, New York (2009)Google Scholar
  22. Wu, H., Wang, R.: Convective heat transfer over a heated square porous cylinder in a channel. Int. J. Heat Mass Transf. 53, 1927–1937 (2010)CrossRefGoogle Scholar
  23. Yu, P., Zeng, Y., Lee, T.S., Bai, H.X., Low, H.T.: Wake structure for flow past and through a porous square cylinder. Int. J. Heat Fluid Flow 31, 141–153 (2010)CrossRefGoogle Scholar
  24. Yu, P., Zeng, Y., Lee, T.S., Chen, X.B., Low, H.T.: Steady flow around and through a permeable circular cylinder. Comput. Fluids 42, 1–12 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Rashidi
    • 1
  • M. Bovand
    • 1
  • I. Pop
    • 2
    Email author
  • M. S. Valipour
    • 1
  1. 1.Faculty of Mechanical EngineeringSemnan UniversitySemnanIran
  2. 2.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations