Transport in Porous Media

, Volume 101, Issue 3, pp 477–505 | Cite as

Thermodynamics, Kinetics, and Hydrodynamics of Mixed Salt Precipitation in Porous Media: Model Development and Parameter Estimation

Article

Abstract

Demands for hydrocarbon production have been increasing in recent years. Today many oilfields around the world are afflicted by the problem of scaling leading to severe formation damage and hampering of petroleum production from hydrocarbon reservoirs. In current study, a mathematical model for prediction of permeability reduction due to scale deposition is developed based on thermodynamics, kinetics, and hydrodynamics of mixed salt precipitation during flow through porous media. Model predictions are compared with sound experimental data for single deposition of barium sulfate and most importantly, for simultaneous precipitation of barium sulfate and strontium sulfate onto rock surface. Owing to high nonlinearity of the proposed model, kinetic parameters embedded in the mathematical model were tuned employing a new approach based on a hybrid algorithm consisting of particle swarm optimization (PSO) technique and pattern search (PS) algorithm. The average absolute deviations ranging from 1.03 to 9.3 % were observed between model forecasts and experimental data which corroborate the suitability and applicability of the model and also confirm the capability of PSO–PS hybrid algorithm as a highly efficient optimization tool. Estimated values for kinetic parameters are also in accordance with collision theory of chemical reactions.

Keywords

Mixed salt precipitation Permeability reduction Mathematical model Particle swarm optimization Pattern Search 

List of symbols

\(l_{1}\)\(l_{5}\)

Constants

\({a}_{1,2}\)

Constants

\({a}_\mathrm{M}\), \({a}_\mathrm{X}\)

Activity of cationic and anionic compound, respectively (mol L\(^{-1})\)

\({A}^{\emptyset }\)

Debye–Huckel coefficient

\({A}_\mathrm{g}\)

Total surface area of grains \((\mathrm{{m}}^{2})\)

\({B}_{ij}\)

Second virial coefficient for single electrolyte ij

\({C}_{ij}\)

Third virial coefficient for single electrolyte ij

\({C}_\mathrm{s}^{*}\)

Saturation concentration \((\mathrm{{kg~m}}^{-3})\)

\({C}_\mathrm{sb}\)

Bulk concentration, \((\mathrm{{kg~m}}^{-3})\)

\({C}_\mathrm{si}\)

Interface concentration which is somewhat between bulk (\({C}_{\mathrm{sb}} )\) and saturation concentration (\({C}_\mathrm{s}^{*} )\), \((\mathrm{{kg~m}}^{-3})\)

\({D}\)

Diffusion coefficient of salt, (\(\mathrm{{m}}^{2}~\mathrm{{s}}^{-1})\)

\({D}_{\mathrm{AB}}^{\circ }\)

Diffusion coefficient at infinite dilution, (\(\mathrm{{cm}}^{2}~\mathrm{{s}}^{-1})\)

\({d}_\mathrm{p}\)

Particle diameter (m)

\(E\)

Activation energy \((\mathrm{{Kj~mol}}^{-1})\)

\(F\)

Faraday, \((\mathrm{{C~g{\text{- }}equiv}}^{-1})\)

\(\mathrm{{Gb}}_{i}^{j}\)

Global best of particle i at iteration j

\({J}_\mathrm{D}\)

Chilton and Colburn J-factor

\(k\)

Permeability \((\mathrm{{m}}^{2})\)

\({k}_{0}\)

Initial permeability \((\mathrm{{m}}^{2})\)

\({K}_{0}\)

Pre-exponential factor \((\mathrm{{m}}^{4}~\mathrm{{kg}}^{-1}\) \(\mathrm{{s}}^{-1})\)

\({k}_\mathrm{r}\)

Reaction rate constant \((\mathrm{{m}}^{4}~\mathrm{{kg}}^{-1}\) \(\mathrm{{s}}^{-1})\)

\({K}_\mathrm{sp}\)

Solubility product \((\mathrm{{kg}}^{2}~\mathrm{{m}}^{-6})\)

\({K}_\mathrm{sp}^{\circ }\)

Thermodynamic solubility product \((\mathrm{{kg}}^{2}~\mathrm{{m}}^{-6})\)

\({m}_\mathrm{M}, {m}_\mathrm{X}\)

Concentration of cationic and anionic compound, respectively \((\mathrm{{mol~l}}^{-1})\)

\({M}^{\mathrm{m}+}, {X}^{\mathrm{n}-}\)

Chemical representation of cationic and anionic compound, respectively

\({{M}_\mathrm{n}}{{X}_\mathrm{m}}\)

Chemical representation of scaling mineral

\(\dot{{m}}_\mathrm{p}\)

Precipitation rate \((\mathrm{{kg~m}}^{-2}~\mathrm{{s}}^{-1})\)

\(\dot{{m}}_\mathrm{pn}\)

Net precipitation rate \((\mathrm{{kg~m}}^{-2}~\mathrm{{s}}^{-1})\)

\(\dot{{m}}_\mathrm{r}\)

Removal rate \((\mathrm{{kg~m}}^{-2}~\mathrm{{s}}^{-1})\)

\(n\)

Order of chemical reaction

\({N}_\mathrm{g}\)

Total number of grains

\({N}_{\mathrm{pts}}\)

Number of experimental data points

\(P\)

Pressure (bar)

\(\mathrm{{Pb}}_{i}^{j}\)

Personal best of particle i at iteration j

\({Pe}\)

Peclet number

\(R\)

Universal gas constant \((\mathrm{{J~mol}}^{-1}~\mathrm{{K}}^{-1})\)

\({Re}\)

Reynolds number

\({Re}_m\)

Modified Reynolds number

\({I}\)

Ionic strength (\(\mathrm{{mol~L}}^{-1}\))

\({Sc}\)

Schmidt number

\({t}\)

Time (s)

\(T\)

Temperature (K)

\({u}\)

Flow velocity (\(\mathrm{{m~s}}^{-1})\)

\({v}_{i}^{j}\)

Velocity vector of particle i at iteration j

\({V}_\mathrm{b}\)

Bulk volume \((\mathrm{{m}}^{3})\)

\({V}_\mathrm{g}\)

Grains volume \((\mathrm{{m}}^{3})\)

\({V}_\mathrm{s}\)

Volume of scale \((\mathrm{{m}}^{3})\)

\({V}_\mathrm{st}\)

Total volume of scale \((\mathrm{{m}}^{3})\)

\({w}^\mathrm{j}\)

Inertia weight

\({x}_{i}^{j}\)

Position vector of particle i at iteration j

\({z}_+, {z}_-\)

Valences of cation and anion

Greek letters

\({\alpha }_{1,2}\)

Constants \(\in [0,1]\)

\({\beta }\)

Mass transfer coefficient, \((\mathrm{{m~s}}^{-1})\)

\({\gamma }_\mathrm{M}, \gamma _\mathrm{X}\)

Activity coefficient of cationic and anionic compound, respectively

\(\theta _{ij}\)

Second virial coefficient for two ions of the same sign

\(\rho _\mathrm{p}\)

Precipitant density \((\mathrm{{kg~m}}^{-3})\)

\(\varphi \)

Total number of molecules or ions given by one mole of electrolyte

\(\emptyset \)

Bed porosity

\(\emptyset _0\)

Initial porosity

\(\psi _{ijk}\)

Third virial coefficient for ions i, j, and k not of the same sign

Subscripts and superscripts

M

Cation

X

Anion

g

Grain

\(i\)

Particle index

\(j\)

Iteration index

n

Net

sb

Scaling bulk

si

Scaling interface

st

Total scaling

\({*}\)

Saturation

References

  1. Bedrikovetsky, P., Mackay, E.J., Rosario, F.F., Monteiro, R.P., Patricio, F.M.R.: Injectivity impairment due to sulfate scaling during PWRI: analytical model. Paper presented at the SPE international oilfield scale symposium, Aberdeen, UK, 31 May–1 June 2006Google Scholar
  2. Bedrikovetsky, P.G. Jr., R.P.L., Gladstone, P.M., Rosario, F.F., Bezerra, M.C., Lima, E.A.: Barium sulphate oilfield scaling: mathematical and laboratory modelling. Paper presented at the SPE international symposium on oilfield scale, Aberdeen, UK, 26–27 May 2004Google Scholar
  3. Bedrikovetsky, P.G., Mackay, E.J., Silva, R.M.P., Patricio, F.M.R., Rosário, F.F.: Produced water re-injection with seawater treated by sulphate reduction plant: Injectivity decline, analytical model. J. Petrol. Sci. Eng. 68(1–2), 19–28 (2009). doi: 10.1016/j.petrol.2009.05.015 CrossRefGoogle Scholar
  4. Binmerdhah, A.B.: The study of scale formation in oil reservoir during water injection at high-barium and high-salinity formation water. M.Sc. thesis, Universiti Teknologi Malaysia (2007)Google Scholar
  5. Butler, J.N.: Ionic Equilibrium: A Mathematical Approach. Addison-Wesley Pub. Co, Boston (1964)Google Scholar
  6. Campbell, J.R., Nancollas, G.H.: Crystallization and dissolution of strontium sulfate in aqueous solution. J. Phys. Chem. 73(6), 1735–1740 (1969). doi: 10.1021/j100726a017 CrossRefGoogle Scholar
  7. Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75(0), S32–S48 (1997). doi: 10.1016/S0263-8762(97)80003-2 CrossRefGoogle Scholar
  8. Chang, F.: Modeling of formation damage due to physical and chemical interactions between fluids and reservoir rocks. PhD thesis, University of Oklahama (1992)Google Scholar
  9. Cowan, J.C., Weintritt, D.J.: Water-Formed Scale Deposits. Gulf Publishing Company, Houston, TX (1976)Google Scholar
  10. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, 4–6 Oct 1995, pp. 39–43 (1995)Google Scholar
  11. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–105 (1952)Google Scholar
  12. Geankoplis, C.J.: Transport Processes: Momentum, Heat and Mass. Allyn & Bacon, Incorporated, Boston (1983)Google Scholar
  13. Harvie, C.E., Weare, J.H.: The prediction of mineral solubilities in natural waters: the NaKMgCaClSO\(_4\)H\(_2\)O system from zero to high concentration at 25 \(^{\circ }\)C. Geochim. Cosmochim. Acta 44(7), 981–997 (1980). doi: 10.1016/0016-7037(80)90287-2
  14. Hassanizadeh, S.M., Gray, W.: High velocity flow in porous media. Transp Porous Media 2(6), 521–531 (1987). doi: 10.1007/BF00192152 CrossRefGoogle Scholar
  15. Helalizadeh, A.: Mixed salt crystallization fouling. PhD Thesis, University of Surrey, UK (2002)Google Scholar
  16. Jamialahmadi, M., Muller-Steinhagen, H.: Mechanisms of scale deposition and scale removal in porous media. Int. J. Oil Gas Coal Technol. 1, 81–108 (2008). doi: 10.1504/IJOGCT.2008.016733 CrossRefGoogle Scholar
  17. Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9(4), 1082–1099 (1999). doi: 10.1137/s1052623496300507 CrossRefGoogle Scholar
  18. Lindlof, J.C., Stoffer, K.G.: A case study of seawater injection incompatibility. J. Petrol. Technol. 35(7), 1256–1262 (1983). doi: 10.2118/9626-pa CrossRefGoogle Scholar
  19. Mackay, E.: Predicting in situ sulphate scale deposition and the impact on produced ion concentrations. Chem. Eng. Res. Des. 81(3), 326–332 (2003). doi: 10.1205/02638760360596874 CrossRefGoogle Scholar
  20. McCune, C.C., Fogler, H.S., Cunningham, J.R.: A new model of the physical and chemical changes in sandstone during acidizing. Soc. Petrol. Eng. J. 15(5), 361–370 (1975). doi: 10.2118/5157-pa CrossRefGoogle Scholar
  21. Mitchell, R.W., Grist, D.M., Boyle, M.J.: Chemical treatments associated with North Sea projects. J. Petrol. Technol. 32(5), 904–912 (1980). doi: 10.2118/7880-pa CrossRefGoogle Scholar
  22. Moghadasi, J., Jamialahmadi, M., Müller-Steinhagen, H., Sharif, A., Ghalambor, A., Izadpanah, M.R., Motaie, E.: Scale formation in Iranian oil reservoir and production equipment during water injection, pp. 29–30. Paper presented at the international symposium on oilfield scale, Aberdeen, UK, 2003Google Scholar
  23. Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Model study on the kinetics of oil field formation damage due to salt precipitation from injection. J. Petrol. Sci. Eng. 43(3–4), 201–217 (2004)CrossRefGoogle Scholar
  24. Mohammadi, A.H., Richon, D.: Thermodynamic modeling of salt precipitation and gas hydrate inhibition effect of salt aqueous solution. Ind. Eng. Chem. Res. 46(14), 5074–5079 (2007). doi: 10.1021/ie061686s CrossRefGoogle Scholar
  25. Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52(4), 821–837 (1988). doi: 10.1016/0016-7037(88)90354-7
  26. Monnin, C.: The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO\(_4\)-H\(_2\)O to 200 \(^{\circ }\)C and 1 kbar and to high NaCl concentration. Geochim. Cosmochim. Acta 54(12), 3265–3282 (1990). doi: 10.1016/0016-7037(90)90284-R
  27. Monnin, C.: Thermodynamic properties of the Na-K-Ca-Ba-Cl-H\(_2\)O system to 473.15 K and solubility of barium chloride hydrates. J. Chem. Eng. Data 40(4), 828–832 (1995). doi:  10.1021/je00020a020 CrossRefGoogle Scholar
  28. Monnin, C.: A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 \(^{\circ }\)C and to 1 kbar. Chem. Geol. 153(1–4), 187–209 (1999). doi: 10.1016/S0009-2541(98)00171-5
  29. Monnin, C., Galinier, C.: The solubility of celestite and barite in electrolyte solutions and natural waters at 25 \(^{\circ }\)C: a thermodynamic study. Chem. Geol. 71(4), 283–296 (1988). doi: 10.1016/0009-2541(88)90055-1
  30. Najibi, S.H., Müller-Steinhagen, H., Jamialahmadi, M.: Calcium sulphate scale formation during subcooled flow boiling. Chem. Eng. Sci. 52(8), 1265–1284 (1997). doi: 10.1016/S0009-2509(96)00505-2 CrossRefGoogle Scholar
  31. Nancollas, G.H., Reddy, M.M.: The kinetics of crystallization of scale-forming minerals. Soc. Petrol. Eng. J. 14(2), 117–126 (1974). doi: 10.2118/4360-pa CrossRefGoogle Scholar
  32. Noncollas, G.H., Liu, S.T.: Crystal growth and dissolution of barium sulfate. Soc. Petrol. Eng. J. 15(6), 509–516 (1975). doi: 10.2118/5300-pa CrossRefGoogle Scholar
  33. Oddo, J.E., Tomson, M.B.: Why scale forms and how to predict it. SPE Prod. Oper. 9(1), 47–54 (1994). doi: 10.2118/21710-pa CrossRefGoogle Scholar
  34. Pabalan, R.T., Pitzer, K.S.: Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO\(_4\)-OH-H\(_2\)O. Geochim. Cosmochim. Acta 51(9), 2429–2443 (1987). doi: 10.1016/0016-7037(87)90295-X
  35. Pedersen, K.S., Christensen, P.L., Azeem, S.J: Phase Behavior of Petroleum Reservoir Fluids. Taylor & Francis, Boca Raton (2006)Google Scholar
  36. Phutela, R.C., Pitzer, K.S., Saluja, P.P.S.: Thermodynamics of aqueous magnesium chloride, calcium chloride, and strontium chloride at elevated temperatures. J. Chem. Eng. Data 32(1), 76–80 (1987). doi: 10.1021/je00047a022 CrossRefGoogle Scholar
  37. Pitzer, K.: Thermodynamics of electrolytes. V. Effects of higher-order electrostatic terms. J. Solut. Chem. 4(3), 249–265 (1975). doi: 10.1007/BF00646562 CrossRefGoogle Scholar
  38. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2), 268–277 (1973). doi: 10.1021/j100621a026 CrossRefGoogle Scholar
  39. Pitzer, K.S., Peiper, J.C., Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13(1), 1–102 (1984)CrossRefGoogle Scholar
  40. Pitzer, K.S., Olsen, J., Simonson, J.M., Roy, R.N., Gibbons, J.J., Rowe, L.: Thermodynamics of aqueous magnesium and calcium bicarbonates and mixtures with chloride. J. Chem. Eng. Data 30(1), 14–17 (1985). doi: 10.1021/je00039a005 CrossRefGoogle Scholar
  41. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell 1(1), 33–57 (2007). doi: 10.1007/s11721-007-0002-0 CrossRefGoogle Scholar
  42. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The properties of gases and liquids. McGraw-Hill Professional Publishing, New York (2001)Google Scholar
  43. Rogers, P.S.Z., Pitzer, K.S.: High-temperature thermodynamic properties of aqueous sodium sulfate solutions. J. Phys. Chem. 85(20), 2886–2895 (1981). doi: 10.1021/j150620a008 CrossRefGoogle Scholar
  44. Sheikholeslami, R., Ong, H.W.K.: Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 M. Desalination 157(1–3), 217–234 (2003). doi: 10.1016/S0011-9164(03)00401-6 CrossRefGoogle Scholar
  45. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, 4–9 May 1998, pp. 69–73 (1998)Google Scholar
  46. Spencer, R.J., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the NaKCaMgClSO\(_4\)H\(_2\)O system at temperatures below 25 \(^{\circ }\)C. Geochim. Cosmochim. Acta 54(3), 575–590 (1990). doi: 10.1016/0016-7037(90)90354-N
  47. Todd, A.C., Yuan, M.D.: Barium and strontium sulfate solid-solution scale formation at elevated temperatures. SPE Prod. Eng. 7(1), 85–92 (1992). doi: 10.2118/19762-pa CrossRefGoogle Scholar
  48. Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Validity of the permeability Carman–Kozeny equation: a volume averaging approach. Phys. A Stat. Mech. Appl. 388(6), 789–798 (2009). doi: 10.1016/j.physa.2008.11.024 CrossRefGoogle Scholar
  49. Vetter, O.J.: Oilfield scale–can we handle it? J. Petrol. Technol. 28(12), 1402–1408 (1976). doi: 10.2118/5879-pa CrossRefGoogle Scholar
  50. Vitthal, S., Sharma, M.M.: A Stokesian dynamics model for particle deposition and bridging in granular media. J. Colloid Interface Sci. 153(2), 314–336 (1992). doi: 10.1016/0021-9797(92)90325-G
  51. Wang, P., Oakes, C.S., Pitzer, K.S.: Thermodynamics of aqueous mixtures of magnesium chloride with sodium chloride from 298.15 to 573.15 K. New measurements of the enthalpies of mixing and of dilution. J. Chem. Eng. Data 42(6), 1101–1110 (1997). doi: 10.1021/je970114z CrossRefGoogle Scholar
  52. Weir, G., White, S.: Surface deposition from fluid flow in a porous medium. Transp Porous Media 25(1), 79–96 (1996). doi: 10.1007/BF00141263
  53. Woods, A.W., Harker, G.: Barium sulphate precipitation in porous rock through dispersive mixing, pp. 29–30. Paper presented at the international symposium on oilfield scale, Aberdeen, UK, 2003Google Scholar
  54. Yuan, M.: Prediction of Sulphate Scaling Tendency and Investigation of Barium and Strontium Sulphate Solid Solution Scale Formation. Heriot-Watt University, Edinburgh (1989)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Petroleum EngineeringPetroleum University of TechnologyAhvazIran

Personalised recommendations