Skip to main content
Log in

Statistical Scaling of Geometric Characteristics in Millimeter Scale Natural Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We analyze statistical scaling of structural attributes of two millimeter scale rock samples, Estaillades limestone and Bentheimer sandstone. The two samples have different connected porosities and pore structures. The pore-space geometry of each sample is reconstructed via X-ray micro-tomography at micrometer resolution. Directional distributions of porosity and specific surface area (SSA), which are key Minkowski functionals (geometric observables) employed to describe the pore-space structure, are calculated from the images, and scaling of associated order-\(q\) sample structure functions of absolute incremental values is analyzed. Increments of porosity and SSA tend to be statistically dependent and persistent (tendency for large and small values to alternate mildly) in space. Structure functions scale as powers \(\xi (q)\) of directional separation distance or lag, \(s\), over an intermediate range of \(s\), displaying breakdown in power law scaling at large and small lags. Powers \(\xi \!\!\left( q \right) \) of porosity and SSA inferred from moment and extended self-similarity (ESS) analyses of limestone and sandstone data tend to be quasi-linear and nonlinear (concave) in \(q\), respectively. We observe an anisotropic behavior for \(\xi (q)\), which appears to be mild for the porosity of the sandstone sample while it is marked for both porosity and SSA of the limestone rock sample. The documented nonlinear scaling behavior is amenable to analysis by viewing the variables as samples from sub-Gaussian random fields subordinated to truncated fractional Brownian motion or fractional Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler, P.M.: Porous Media: Geometry and Transports. Butterworth-Heinemann, Boston (1992)

    Google Scholar 

  • Benzi, R., Ciliberto, S., Baudet, C., Chavarria, G.R., Tripiccione, R.: Extended self-similarity in the dissipation range of fully developed turbulence. Europhys. Lett. 24, 275–279 (1993a). doi:10.1209/0295-5075/24/4/007

    Article  Google Scholar 

  • Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S.: Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29–R32 (1993b). doi:10.1103/PhysRevE.48.R29

    Article  Google Scholar 

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E. 87, 013011 (2013a). doi:10.1103/PhysRevE.87.013011

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013b). doi:10.1002/wrcr.20238

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. CVPR ’05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 2, pp. 60–65, 2005

  • Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie denoising. Int. J. Comput. Vision 76, 123–139 (2008)

    Article  Google Scholar 

  • Castle, J.W., Molz, F.J., Lu, S., Dinwiddie, C.L.: Sedimentology and fractal-based analysis of permeability data, John Henry member, Straight Cliffs formation (upper Cretaceous), Utah, U.S.A. J. Sediment. Res. 74(2), 270–284 (2004)

    Article  Google Scholar 

  • Chakraborty, S., Frisch, U., Ray, S.S.: Extended self-similarity works for the Burgers equation and why. J. Fluid Mech. 649, 275–285 (2010). doi:10.1017/S0022112010000595

    Article  Google Scholar 

  • Coker, D.A., Torquato, S.: Extraction of morphological quantities from a digitized medium. J. Appl. Phys. 77(121), 6087–6099 (1995)

    Article  Google Scholar 

  • Dashtian, H., Jafari, G.R., Sahimi, M., Msihi, M.: Scaling, multifractality, and long-range correlations in well log data of large-scale porous media. Physica A 390, 2096–2111 (2011). doi:10.1016/j.physa.2011.01.010

    Article  Google Scholar 

  • Deshpande, A., Flemings, P.B., Huang, J.: Quantifying lateral heterogeneities in fluvio-deltaic sediments using three-dimensional reflection seismic data: Offshore Gulf of Mexico. J. Geophys. Res. 102(B7), 15385–15401 (1997)

    Article  Google Scholar 

  • Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997). doi:10.1029/97WR00299

    Article  Google Scholar 

  • Di Federico, V., Neuman, S.P., Tartakovsky, D.M.: Anisotropy, lacunarity, upscaled conductivity and its covariance in multiscale fields with truncated power variograms. Water Resour. Res. 35(10), 2891–2908 (1999)

    Article  Google Scholar 

  • Feder, J.: Fractals. Plenum Press, New York (1988)

    Book  Google Scholar 

  • Guadagnini, A., Neuman, S.P., Schaap, M.G., Riva, M.: Anisotropic Statistical Scaling of Soil and Sediment Texture in a Stratified Deep Vadose Zone near Maricopa, Arizona, Geoderma  214–215, 217–227 (2014). doi:10.1016/j.geoderma.2013.09.008

  • Guadagnini, A., Neuman, S.P.: Extended self-affinity of signals exhibiting apparent multifractality. Geophys. Res. Lett. 38, L13403 (2011). doi:10.1029/2011GL047727

    Article  Google Scholar 

  • Guadagnini, A., Neuman, S.P., Riva, M.: Numerical investigation of apparent multifractality of samples from processes subordinated to truncated fBm. Hydrol. Process. 26, 2894–2908 (2012). doi:10.1002/hyp.8358

    Article  Google Scholar 

  • Hilfer, R.: Review on scale dependent characterization of the microstructure of porous media. Transport Porous Med. 46, 373–390 (2002)

    Article  Google Scholar 

  • Kravchenko, A.N., Martín, M.A., Smucker, A.J.M., Rivers, M.L.: Limitations in determining multifractal spectra from pore-solid soil aggregate images. Vadose Zone J. 8, 220–226 (2009)

    Article  Google Scholar 

  • Latief, F.D.E., Biswal, B., Fauzi, U., Hilfer, R.: Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone. Physica A 389, 1607–1618 (2010)

    Article  Google Scholar 

  • Leonardis, E., Chapman, S.C., Foullon, C.: Turbulent characteristics in the intensity fluctuations of a solar quiescent prominence observed by the Hinode Solar Optical Telescope. Astrophys. J. 745, 185 (2012). doi:10.1088/0004-637X/745/2/185

    Article  Google Scholar 

  • Meerschaert, M.M., Kozubowski, T.J., Molz, F.J., Lu, S.: Fractional laplace model for hydraulic conductivity. Geophys. Res. Lett. 31, L08501 (2004). doi:10.1029/2003GL019320

    Article  Google Scholar 

  • Molz, F., Boman, G.: Further evidence of fractal structure in hydraulic conductivity distributions. Geophys. Res. Lett. 22(18), 2545–2548 (1995)

    Article  Google Scholar 

  • Molz, F., Liu, H., Szulga, J.: Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: a review, presentation of fundamental properties, and extensions. Water Resour. Res. 33(10), 2273–2286 (1997)

    Article  Google Scholar 

  • Neuman, S.P., Di Federico, V.: Multifaceted nature of hydrogeologic scaling and its interpretation. Rev. Geophys. 41(3), 1014 (2003). doi:10.1029/2003RG000130

    Article  Google Scholar 

  • Neuman, S.P.: Apparent/spurious multifractality of data sampled from fractional Brownian/Lévy motions. Hydrol. Process. 24, 2056–2067 (2010a). doi:10.1002/hyp.7611

    Google Scholar 

  • Neuman, S.P.: Apparent/spurious multifractality of absolute increments sampled from truncated fractional Gaussian/Lévy noise. Geophys. Res. Lett. 37, L09403 (2010b). doi:10.1029/2010GL043314

    Article  Google Scholar 

  • Neuman, S.P.: Apparent multifractality and scale-dependent distribution of data sampled from self-affine processes. Hydrol. Process. 25, 1837–1840 (2011). doi:10.1002/hyp.7967

    Article  Google Scholar 

  • Neuman, S.P., Guadagnini, A., Riva, M., Siena, M.: Recent advances in statistical and scaling analysis of earth and environmental variables. In: Mishra, P.K., Kuhlman, K.L. (eds.) Recent Advances in Hydrogeology, pp. 11–15. Springer Science+Business Media, New York (2013)

    Google Scholar 

  • Nikora, V.I., Goring, D.G.: Extended self-similarity in geophysical and geological applications. Math. Geol. 33(3), 251–271 (2001). doi:10.1023/A:1007630021716

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E. 70, 066135 (2004). doi:10.1103/PhysRevE.70.066135

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Petrol. Sci. Eng. 46, 121–137 (2005). doi:10.1016/j.petrol.2004.08.002

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour. Res. 43, W12S02 (2007). doi:10.1029/2006WR005680

    Article  Google Scholar 

  • Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64(5), 1447–1460 (1999)

    Article  Google Scholar 

  • Paz Ferreiro, J., Wilson, M., Vidal Vázquez, E.: Multifractal description of nitrogen adsorption isotherms. Vadose Zone J. 8, 209–219 (2009)

    Article  Google Scholar 

  • Paz Ferreiro, J., Miranda, J.G.V., Vidal Vázquez, E.: Multifractal analysis of soil porosity based on mercury injection and nitrogen adsorption. Vadose Zone J. 9(2), 325–335 (2010)

    Article  Google Scholar 

  • Perfect, E., Kay, B.D.: Applications of fractals in soil and tillage research: a review. Soil Tillage Res. 36, 1–20 (1995)

    Article  Google Scholar 

  • Riva, M., Neuman, S.P., Guadagnini, A., Siena, M.: Anisotropic scaling of Berea sandstone log air permeability statistics. Vadose Zone J. 12(3), (2013b). doi:10.2136/vzj2012.0153

  • Riva, M., Neuman, S.P., Guadagnini, A.: Sub-Gaussian model of processes with heavy tailed distributions applied to permeabilities of fractured tuff. Stoch. Environ. Res. Risk Assess. 27, 195–207 (2013a). doi:10.1007/s00477-012-0576-y

    Article  Google Scholar 

  • Sahimi, M., Yortsos, Y.C.: Applications of fractal geometry to porous media: a review. SPE 20476, Society of Petroleum Engineers (1991)

  • Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994)

    Google Scholar 

  • Siena, M., Guadagnini, A., Riva, M., Neuman, S.P.: Extended power-law scaling of air permeabilities measured on a block of tuff. Hydrol. Earth Syst. Sci. 16, 29–42 (2012). doi:10.5194/hess-16-29-2012

    Article  Google Scholar 

  • Stumpf, M.P.H., Porter, M.A.: Critical truths about power laws. Science 335, 665–666 (2012)

    Article  Google Scholar 

  • Tennekoon, L., Boufadel, M.C., Lavallee, D., Weaver, J.: Multifractal anisotropic scaling of the hydraulic conductivity. Water Resour. Res. 39(7), 1193 (2003). doi:10.1029/2002WR001645

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Funding from MIUR (Italian Ministry of Education, Universities and Research-PRIN2010-11; project: “Innovative methods for water resources under hydro-climatic uncertainty scenarios”) is acknowledged. The authors are grateful to M. Siena for providing the algorithm and code for the extraction of porosity and SSA from the digitized binary images. The authors thank S.P. Neuman for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guadagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guadagnini, A., Blunt, M.J., Riva, M. et al. Statistical Scaling of Geometric Characteristics in Millimeter Scale Natural Porous Media. Transp Porous Med 101, 465–475 (2014). https://doi.org/10.1007/s11242-013-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0254-7

Keywords

Navigation