Transport in Porous Media

, Volume 101, Issue 3, pp 349–364 | Cite as

Toward a New Method of Porosimetry: Principles and Experiments

  • Antonio Rodríguez de Castro
  • Abdelaziz Omari
  • Azita Ahmadi-Sénichault
  • Denis Bruneau


Current experimental methods used to determine pore size distributions (PSD) of porous media present several drawbacks such as toxicity of the employed fluids (e.g., mercury porosimetry). The theoretical basis of a new method to obtain the PSD by injecting yield stress fluids through porous media and measuring the flow rate \(Q\) at several pressure gradients \(\nabla P\) was proposed in the literature. On the basis of these theoretical considerations, an intuitive approach to obtain PSD from \(Q(\nabla P)\) is presented in this work. It relies on considering the extra increment of \(Q\) when \(\nabla P\) is increased, as a consequence of the pores of smaller radius newly incorporated to the flow. This procedure is first tested and validated on numerically generated experiments. Then, it is applied to exploit data coming from laboratory experiments and the obtained PSD show good agreement with the PSD deduced from mercury porosimetry.


Porosimetry Yield stress Experimental method  Pore size distribution Porous media 



Antonio Rodriguez de Castro wishes to thank La Caixa Foundation for its financial support through an international grant for postgraduate studies.


  1. Abidina, A.Z., Puspasaria, T., Nugrohoa, W.A.: Polymers for enhanced oil recovery technology. Proc. Chem. 4, 11–16 (2012)CrossRefGoogle Scholar
  2. Ambari, A., Benhamou, M., Roux, S., Guyon, E.: Distribution des tailles des pores d‘un milieu poreux déterminée par l‘écoulement d‘un fluide à seuil. C.R. Acad. Sci. Paris t.311(II), 1291–1295 (1990)Google Scholar
  3. Ambrose, H.A., Loomis, A.G.: Fluidities of thixotropic gels: bentonite suspensions. Physics 4, 265 (1933)CrossRefGoogle Scholar
  4. Balan, H.O., Balhoff, M.T., Nguyen, Q.P., Rossen, W.R.: Network modeling of gas trapping and mobility in foam enhanced oil recovery. Energy Fuels 25(9), 3974–3987 (2011)CrossRefGoogle Scholar
  5. Balhoff, M.T., Thompson, K.E.: Modeling the steady flow of yield-stress fluids in packed beds. AlChE J. 50(12), 3034–3048 (2004)CrossRefGoogle Scholar
  6. Balhoff, M.T., Lake, L.W., Bommer, P.M., Lewis, R.E., Weber, M.J., Calderin, J.M.: Rheological and yield stress measurements of non-Newtonian fluids using a Marsh funnel. J. Petrol. Sci. Eng. 77(3–4), 393–402 (2011)CrossRefGoogle Scholar
  7. Balhoff, M., Sanchez-Rivera, D., Kwok, A., Mehmani, Y., Prodanovic, M.: Numerical algorithms for network modeling of yield stress and other non-Newtonian fluids in porous media. Transp. Porous Media 93(3), 363–379 (2012)CrossRefGoogle Scholar
  8. Barnes, H., Walters, K.: The yield stress myth? Rheol. Acta 24, 323–326 (1985)CrossRefGoogle Scholar
  9. Chaplain, V., Mills, P., Guiffant, G., Cerasi, P.: Model for the flow of a yield fluid through a porous medium. J. Phys. II France 2, 2145–2158 (1992)CrossRefGoogle Scholar
  10. Chauveteau, G.A.: The grain and pore throat model: a tool to predict mass transport and formation damage. In: SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, pp. 20–21 (2002)Google Scholar
  11. Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., Hec, L., Melnichenko, Y.B., Radlinski, A.P., Blach, T.P.: Pore structure characterization of North American shale gas reservoirs using USANS SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616 (2013)CrossRefGoogle Scholar
  12. Galaup, S., Liu, Y., Cerepi, A.: New integrated 2D–3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system. Microporous Mesoporous Mater. 154, 175–186 (2012)CrossRefGoogle Scholar
  13. Garcia-Ochoa, F., Santosa, V.E., Casasb, J.A., Gómez, E.: Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18, 549–579 (2000)CrossRefGoogle Scholar
  14. Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23, 1–11 (2006)CrossRefGoogle Scholar
  15. Hirata, Y., Matsushima, K., Matsunaga, N., Sameshima, S.: Viscoelastic properties of flocculated alumina suspensions during pressure filtration. J. Ceram. Soc. Jpn 118, 977–982 (2010)CrossRefGoogle Scholar
  16. Islam, M.T., Rodríguez-Hornedo, N., Ciotti, S., Ackermann, C.: Rheological characterization of topical carbomer gels neutralized to different pH. Pharma. Res. 21(7) (2004)Google Scholar
  17. Kate, J.M., Gokhale, C.S.: A simple method to estimate complete pore size distribution of rocks. Eng. Geol. 84, 48–69 (2006)CrossRefGoogle Scholar
  18. Khodja, M.: Les fluides de forage: tude des performances et considerations environnementales. PhD thesis, Institut National Polytechnique de Toulouse (2008)Google Scholar
  19. Kim, J.-Y., Song, J.-Y., Lee, E.-J., Park, S.-K.: Rheological properties and microstructures of carbopol gel network system. Colloid Polym. Sci. 281, 614–623 (2003)CrossRefGoogle Scholar
  20. Lindquist, W.B., Venkatarangan, A.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. Solid Earth 105(B9), 21509–21527 (2000)CrossRefGoogle Scholar
  21. Mabille, C., Schmitt, V., Gorria, P., Calderón, F.L., Faye, V., Deminière, B., Bibette, J.: Rheological and shearing conditions for the preparation of monodisperse emulsions. Langmuir 16, 422–429 (2000)CrossRefGoogle Scholar
  22. Mongruel, A., Cloitre, M.: Axisymmetric orifice flow for measuring the elongational viscosity of semi-rigid polymer solutions. J. Non-Newton. Fluid Mech. 110, 27–43 (2003)CrossRefGoogle Scholar
  23. Nguyen, Q., Boger, D.: Direct yield stress measurement with the vane method. J. Rheol. 29(3), 335–347 (1983)Google Scholar
  24. Nimmo, J.R.: Porosity and pore size distribution. In: Hillel, D. (ed.) Encyclopedia of Soils in the Environment, vol. 3, pp. 295–303. Elsevier, London (2004)Google Scholar
  25. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Petrol. Sci. Eng. 46, 121–137 (2005)CrossRefGoogle Scholar
  26. Oukhlef, A.: Détermination de la distribution de tailles de pores d‘un milieu poreux. PhD thesis, Arts et Métiers ParisTech–Centre Angers, Paris, 12 December (2011)Google Scholar
  27. Oukhlef, A., Ambari, A., Champmartin, S., Despeyroux, A.: Détermination de la distribution de tailles de pores d‘un milieu poreux par la méthode des fluides à seuil, 20ème Congrès Français de Mécanique, Besançon, 29 August–2 September (2011)Google Scholar
  28. Palaniraj, A., Jayaraman, V.: Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12 (2011)CrossRefGoogle Scholar
  29. Plougonven, E.: Lien entre la microstructure des matériaux poreux et leur perméabilité. Mise en évidence des paramètres géométriques et topologiques influant sur les propriétés de transport par analyses dimages microtomographiques. PhD Thesis, Ecole Doctorale des Sciences Chimiques, Université de Bordeaux 1, 6 october (2009)Google Scholar
  30. Prodanovic, M., Lindquist, W.B., Seright, R.S.: Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J. Colloid Interface Sci. 298, 282–297 (2006)CrossRefGoogle Scholar
  31. Prodanovic, M., Lindquist, W.B., Seright, R.S.: 3D image-based characterization of fluid displacement in a Berea core. Adv. Water Resourc. 30, 214–226 (2007)CrossRefGoogle Scholar
  32. Radlinski, A.P., Ioannidis, M.A., Hinde, A.L., Hainbuchner, M., Baron, M., Rauch, H., Kline, S.R.: Angstrom-to-millimeter characterization of sedimentary rock microstructure. J. Colloid Interface Sci. 274, 607–612 (2004)CrossRefGoogle Scholar
  33. Riche, F., Schneebeli, M., Tschanz, S.A.: Design-based stereology to quantify structural properties of artificial and natural snow using thin sections. Cold Reg. Sci. Technol. 79–80, 67–74 (2012)CrossRefGoogle Scholar
  34. Rouquerol, J., Baron, G.V., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: The characterization of macroporous solids: an overview of the methodology. Microporous Mesoporous Mater. 154, 2–6 (2012)CrossRefGoogle Scholar
  35. Skelland, A.H.P.: Non-Newtonian Flow and Heat Transfer. Wiley, New York (1967)Google Scholar
  36. Sochi, T.: Modelling the flow of yield-stress fluids in porous media. Trans. Porous Med. 85, 489–503 (2010)CrossRefGoogle Scholar
  37. Sochi, T., Blunt, M.J.: Pore-scale network modeling of Ellis and Herschel–Bulkley fluids. J. Petrol. Sci. Eng. 60, 105–124 (2008)CrossRefGoogle Scholar
  38. Song, K.-W., Kim, Y.-S., Chang, G.S.: Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym. 7(2), 129–138 (2006)CrossRefGoogle Scholar
  39. Sun, Z., Tang, X., Cheng, G.: Numerical simulation for tortuosity of porous media. Microporous Mesoporous Mater. 173, 37–42 (2013)CrossRefGoogle Scholar
  40. Tiu, C., Guo, J., Uhlherr, P.H.T.: Yielding behaviour of viscoplastic materials. J. Ind. Eng. Chem. 12(5), 653–662 (2006)Google Scholar
  41. United Nations Environment Programme (UNEP).: Minamata convention on mercury. (2013). Accessed 25 Oct 2013
  42. Wadhai, V.S., Dixit, A.N.: Production of Xanthan gum by Xanthomonas campestris and comparative study of Xanthomonas campestris isolates for the selection of potential Xanthan producer. Indian Streams Res. J. 1, 1–4 (2011)Google Scholar
  43. Wardlaw, N.C., McKellar, M., Yu, L.: Pore and throat size distributions determined by mercury porosimetry and by direct observation. Carbonates Evaporites 3, 1–16 (1988)CrossRefGoogle Scholar
  44. Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Papierflieger (2005).Google Scholar
  45. Zhu, C., Smay, J.E.: Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. J. Rheol. 55, 655–672 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Antonio Rodríguez de Castro
    • 1
  • Abdelaziz Omari
    • 1
  • Azita Ahmadi-Sénichault
    • 1
  • Denis Bruneau
    • 1
  1. 1.TREFLE Department, Institut de Mécanique et d’Ingénierie de BordeauxArts et Métiers ParisTech, Esplanade des Arts et MétiersTalenceFrance

Personalised recommendations