Skip to main content
Log in

Analytical Model for Fines Migration During Water Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Exact solution is derived for axisymmetric flow during water injection with fine particles detachment, migration, attachment and straining. The solution contains the so-called erosion front described as a weak discontinuity, behind which the mechanical equilibrium of attached particles holds and the dynamic attachment occurs ahead of the front. Introduction of a timely potential form for suspended concentration decreases the order of governing system allowing derivation of the erosion front trajectory. The analytical model describes the injectivity decline due to fines migration and reveals non-monotonic injection rate dependency of the well index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{123}\) :

Hamaker constant \((\hbox {ML}^{2}\hbox {T}^{-2})\)

\(c\) :

Suspended particle concentration \((\hbox {L}^{-3})\)

\(C\) :

Dimensionless suspended particle concentration

\(D\) :

Erosion front velocity \((\hbox {LT}^{-1})\)

\(d\) :

Collision diameter (L)

\(f_{\mathrm{s}}\) :

Probability density function for colloid radius

\(f_{\mathrm{p}}\) :

Probability density function for pore radius

\(F\) :

Force \((\hbox {MLT}^{-2})\)

\(h\) :

Particle surface separation distance (L)

\(H\) :

Thickness of a rectangular pore channel (L)

\(J\) :

Impedance (normalized reciprocal of well index)

\(k\) :

Absolute permeability \((\hbox {L}^{2})\)

\(k_{\mathrm{B}}\) :

Boltzmann constant \((\hbox {ML}^{2}\hbox {T}^{-2}\hbox {K}^{-1})\)

\(l\) :

Characteristic wavelength (L)

\(l_{\mathrm{n}}\) :

Normal lever (L)

\(l_{\mathrm{d}}\) :

Tangential lever (L)

\(n_{\infty }\) :

Bulk number density of ions \((\hbox {L}^{-3})\)

\(p\) :

Pressure \((\hbox {MT}^{-2}\hbox {L}^{-1})\)

\(P\) :

Dimensionless pressure

PVI:

Pore volume injected (dimensionless unit for time T)

\(q\) :

Volumetric flow rate per unit of the reservoir production thickness \((\hbox {L}^{2}\hbox {T}^{-1})\)

\(r\) :

Radius (L)

\(r_{\mathrm{e}}\) :

Drainage radius of the well (L)

\(r_{\mathrm{s}}\) :

Radius of a particle (L)

\(S\) :

Dimensionless retained particle concentration

\(t\) :

Time (T)

\(T^{/}\) :

Dimensionless time coordinate of intersection point of characteristics with erosion front

\(U\) :

Darcy’s velocity in porous media \((\hbox {LT}^{-1})\)

\(u\) :

Dimensionless velocity

\(V\) :

Potential energy \((\hbox {ML}^{2}\hbox {T}^{-2})\)

\(U\) :

Dimensionless velocity

\(X\) :

Dimensionless radial coordinate

\(\beta \) :

Formation damage coefficient

\(\gamma \) :

Salinity

\(\Delta \) :

Difference between two values (pressure, retained concentration)

\(\varepsilon \) :

Erosion number (ratio between the torques of detaching and attaching forces)

\(\zeta \) :

Surface potential (mV)

\(\kappa \) :

Debye length \((\hbox {L}^{-1})\)

\(\lambda \) :

Dimensional filtration coefficient \((\hbox {L}^{-1})\)

\(\Lambda \) :

Dimensionless filtration coefficient

\(\mu \) :

Dynamic viscosity \((\hbox {ML}^{-1}\hbox {T}^{-1})\)

\(\rho \) :

Fluid density \((\hbox {ML}^{-3})\)

\(\sigma \) :

Concentration of retained particles \((\hbox {L}^{-3})\)

\(\phi \) :

Porosity

\(\chi \) :

Lifting force coefficient

\(\omega \) :

Drag force coefficient

cr:

Critical (for attached concentration and coordinate of erosion front)

i:

Initial conditions values (for suspended and retained concentrations, for erosion number)

e:

electrostatic (for force)

w:

Well (for radius, dimensionless radial coordinate and erosion number)

m:

Maximum value (for velocity and erosion number)

n:

Normal (for force)

p:

Pore (for pore radius and pore size distribution)

s:

Straining (for retained concentration, filtration coefficients and formation damage coefficient)

a:

Attachment (for retained concentration, filtration coefficients and formation damage coefficient)

0:

Initial value (for permeability and dimensionless radial coordinate)

d:

Drag (for force), damage (for reservoir radius and dimensionless radial coordinate)

g:

Gravitational (for force)

w:

Well

BR:

Born repulsion (for potential energy)

DLR:

Electrostatic double layer (for potential energy)

LVA:

London–van der Waal (for potential energy)

References

  • Ahfir, N.D., Benamar, A., Alem, A., Wang, H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. J. Transp. Porous Media 76, 289–307 (2009)

    Article  Google Scholar 

  • Asghari, K., Kharrat, R., Vassouhi, S.: Alteration of permeability by fine particle movement—a water injectivity problem. In: SPE International Symposium on Oilfield Chemistry, San Antonio, TX, USA, 14–17 February 1995

  • Bear, J., Cheng, A.H.-D.: An overview. In: Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D., Herrera, I. (eds.) Seawater Intrusion in Coastal Aquifers—Concepts, Methods, and Practices, pp. 1–8. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  • Bedrikovetsky, P.G.: Upscaling of stochastic micro model for suspension transport in porous media. J. Transp. Porous Media 75(3), 335–369 (2008)

    Article  Google Scholar 

  • Bedrikovetsky, P., Siqueira, F.D., Furtado, C., de Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. J. Transp. Porous Media 86, 353–383 (2011)

    Article  Google Scholar 

  • Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., Furtado, C., de Souza, A.L.S.: Particle detachment under velocity alternation during suspension transport in porous media. J. Transp. Porous Media 91(1), 173–197 (2012)

    Article  Google Scholar 

  • Bradford, S., Kim, H., Haznedaroglu, B., Torkzaban, S., Walker, S.: Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. J. Environ. Sci. Technol. 43, 6996–7002 (2009)

    Article  Google Scholar 

  • Bradford, S., Torkzaban, S., Simunek, J.: Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resour. Res. 47(10), W1050-3–W1050-11 (2011)

    Google Scholar 

  • Bradford, S., Torkzaban, S., Morales, V., Zhang, W., Harvey, R., Packman, A., Mohanram, A., Welty, C.: Transport and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Technol. (2012). doi:10.1080/10643389.2012.710449

  • Cheng, A.H.-D., Ouazar, D.: Coastal Aquifer Management-Monitoring, Modeling, and Case Studies. Lewis Publishers, London (2003)

    Google Scholar 

  • Cheng, A.H.-D., Benhachmi, M.K., Halhal, D., Ouazar, D., Naji, A., EL Harrouni, K.: Pumping optimization in saltwater-intruded aquifers. In: Cheng, A.H.-D., Ouazar, D. (eds.) Coastal Aquifer Management—Monitoring, Modeling, and Case Studies, pp. 233–256. Lewis Publishers, London (2003)

    Google Scholar 

  • Civan, F.: Reservoir Formation Damage (Fundamentals, Modeling, Assessment, and Mitigation), 2nd edn. Gulf Professional Publishing, Oxford (2007)

    Google Scholar 

  • Civan, F.: Temperature effect on power for particle detachment from pore wall described by an Arrhenius-type equation. J. Trans. Porous Media 67, 329–334 (2010a)

    Article  Google Scholar 

  • Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. J. Transp. Porous Media 85(1), 233–258 (2010b)

    Article  Google Scholar 

  • Chatterjee, R., Mitra, S., Bhattacharjee, S.: Particle deposition onto janus and patchy spherical collectors. Langmuir 27, 8787–8797 (2011)

    Article  Google Scholar 

  • Elimelech, M., John, G., Xiadong, J., Richard, W.: Particle Deposition and Aggregation: Measurement, Modelling, and Simulation. Butterworth-Heinemann, New York (1995)

    Google Scholar 

  • Feitosa, G.S., Lifu, C., Thompson, L.G., Reynolds, A.C.: Determination of permeability distribution from well-test pressure data. J. Petroleum Technol. 47, 607–615 (1994)

    Google Scholar 

  • Gregory, J.: Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 51(1), 44–51 (1975)

    Article  Google Scholar 

  • Gregory, J.: Approximate expressions for retarded van der waals interaction. J. Colloid Interface Sci. 83(1), 138–145 (1981)

    Article  Google Scholar 

  • Guedes, R.G., Al-Abduwani, F., Bedrikovetsky, P., Currie, P.: Injectivity decline under multiple particle capture mechanisms. Soc. Petroleum Eng. J. 8, 477–487 (2009)

    Google Scholar 

  • Habibi, A., Ahmadi, M., Pourafshary, P., Al-Wahaibi, Y.: Reduction of fines migration by nanofluids injection: an experimental study. Soc. Petroleum Eng. J. 27(14), 1–10 (2012)

    Google Scholar 

  • Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, London (2006)

    Google Scholar 

  • Ju, B., Fan, T., Wang, X., Qui, X.: A new simulation framework for predicting the onset and effects of fines mobilization. J. Transp. Porous Media. 68, 265–283 (2007)

    Article  Google Scholar 

  • Khilar, K., Fogler, S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  • Kang, S., Subramani, A., Hoek, E.M.V., Deshusses, M.A., Matsumoto, M.R.: Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. J. Membr. Sci. 244, 151–165 (2004)

    Article  Google Scholar 

  • Lin, K., Pryadko, L., Walker, S., Zandi, R.: Attachment and detachment rate distributions in deep-bed filtration. Phys. Rev. E. 79, 046321-1–046321-12 (2009)

    Google Scholar 

  • Mays, D., Hunt, J.: Hydrodynamic aspects of particle clogging in porous media. J. Environ. Sci. Technol. 39(2), 577–584 (2005)

    Article  Google Scholar 

  • Massoudieh, A., Ginn, T.R.: Colloid-facilitated contaminant transport in unsaturated porous media, Chapter 8. In: Hanrahan, G. (ed.) Modelling of Pollutants in Complex Environmental Systems, vol. II. ILM Publications, Glensdale (2010)

    Google Scholar 

  • Muecke, T.W.: Formation fines and factors controlling their movement in porous media. J. Petroleum Technol. 31(2), 144–150 (1979)

    Google Scholar 

  • Nunes, M., Bedrikovetsky, P., Newbery, B., Furtado, C.A., Souza, A.L.: Theoretical definition of formation damage zone with applications to well stimulation. J. Energy Res. Technol. 132, 33101-1–33101-7 (2010)

    Google Scholar 

  • Payatakes, A.S., Rajagopalan, R., Tien, C.: Application of porous medium models to the study of deep bed filtration. Can. J. Chem. Eng. 52(6), 722–731 (1974)

    Article  Google Scholar 

  • Rousseau, D., Hadi, L., Nabzar, L.: Injectivity decline from produced water re-injection: new insight on in-depth particle-deposition mechanisms. Soc. Petroleum Eng. J. 23(4), 525–531 (2008)

    Google Scholar 

  • Ruckenstein, D.C., Prieve, D.C.: Adsorption and desorption of particles and their chromatographic separation. AIChE J. 22, 276 (1976)

    Article  Google Scholar 

  • Rosenbrand, E., Fabricius, I., Yuan, H.: Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilisation and aggregation. In: Proceedings of 37th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30–February 1 (2012)

  • Rosenbrand, E., Fabricius, I., Kets, F.: Kaolinite mobilisation in sandstone: pore plugging vs suspended particles, pp. 11–13. In: Proceedings of 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February (2013)

  • Santos, A., Bedrikovetsky, P.G.: A Stochastic model for particulate suspension flow in Porous Media. J. Transp. Porous Media 13, 30–52 (2006)

    Google Scholar 

  • Shapiro, A.A.: Elliptic equation for random walks. Application to transport in micro-porous media. Physica A 375(1), 81–96 (2007)

    Article  Google Scholar 

  • Shapiro, A.A., Wesselingh, J.A.: Gas transport in tight porous media. Gas Kinet. Approach. Chem. Eng. J. 142, 14–22 (2008)

    Google Scholar 

  • Sharma, M.M., Kuo, J.F., Yen, T.F.: Further investigation of the surface charge properties of oxide surfaces in oil-bearing sands and sandstones. J. Colloid Interface Sci. 115(1), 9–16 (1987)

    Article  Google Scholar 

  • Sharma, M.M., Yortsos, Y.C.: Transport of particulate suspensions in porous media: model formulation. AIChE J. 33(13), 1636–1643 (1987a)

    Article  Google Scholar 

  • Sharma, M.M., Yortsos, Y.C.: A network model for deep bed filtration processes. AIChE J. 33(13), 1644–1653 (1987b)

    Article  Google Scholar 

  • Sharma, M.M., Yortsos, Y.C.: Fines migration in porous media. AIChE J. 33(13), 1654–1662 (1987c)

    Article  Google Scholar 

  • Shenglai, Y., Zhichao, S., Wenhui, L., Zhixue, S., Ming, W., Jianwei, Z.: Evaluation and prevention of formation damage in offshore sandstone reservoirs in China. Petroleum Sci. 5(4), 340–347 (2008)

    Article  Google Scholar 

  • Stephan, E.A., Chase, G.G.: A preliminary examination of zeta potential in deep bed filtration activity. Sep. Purif. Technol. 21(3), 219–226 (2001)

    Article  Google Scholar 

  • Thompson, L.G., Reynolds, A.C.: Well testing for radially heterogeneous reservoirs under single and and multiphase flow conditions. Soc. Petroleum Eng. J. SPEFE 12(1), 57–64 (1997)

    Google Scholar 

  • Wang, J., Liu, H., Wang, Z., How, P.: Experimental investigation on the filtering flow law of pre-gelled particle in porous media. J. Transp. Porous Media 94, 69–86 (2012)

    Article  Google Scholar 

  • Wong, R., Mettananda, D.: Permeability reduction in Qishn Sandstone specimens due to particle suspension injection. J. Transp. Porous Media 81, 105–122 (2010)

    Article  Google Scholar 

  • Yortsos, Y.C., Shankar, K.: Asymptotic analysis of pore-closure reactions. Ind. Eng. Chem. Fundam. 23, 132–134 (1984)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A.: A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chem. Eng. J. 166(1), 105–115 (2010a)

  • Yuan, H., Shapiro, A.A.: Modeling non-Fickian transport and hyperexponential deposition for deep bed filtration. Chem. Eng. J. 162, 974–988 (2010b)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr A Badalyan (The University of Adelaide) for assistance in modelling of the electrostatic interactions. Dr Zhenjiang You (The University of Adelaide) is gratefully acknowledged for fruitful discussions and for help in preparing the manuscript. The study is generously sponsored by the Australian Research Council and Santos Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bedrikovetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedrikovetsky, P., Caruso, N. Analytical Model for Fines Migration During Water Injection. Transp Porous Med 101, 161–189 (2014). https://doi.org/10.1007/s11242-013-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0238-7

Keywords

Navigation