Transport in Porous Media

, Volume 100, Issue 3, pp 377–392 | Cite as

Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects

  • Lyacine Bennacer
  • Nasre-Dine Ahfir
  • Abderrazak Bouanani
  • Abdellah Alem
  • Huaqing Wang
Article

Abstract

An experimental study on the transport and deposition of suspended particles (SP) in a saturated porous medium (calibrated sand) was undertaken. The influence of the size distribution of the SP under different flow rates is explored. To achieve this objective, three populations with different particles size distributions were selected. The median diameter \(d_{50}\) of these populations was 3.5, 9.5, and \(18.3~\upmu \hbox {m}\). To study the effect of polydispersivity, a fourth population noted “Mixture” (\(d_{50} = 17.4\; \upmu \hbox {m}\)) obtained by mixing in equal proportion (volume) the populations 3.5 and \(18.3\;\upmu \hbox {m}\) was also used. The SP transfer was compared to the dissolved tracer (DT) one. Short pulse was the technique used to perform the SP and the DT injection in a column filled with the porous medium. The breakthrough curves were competently described with the analytical solution of a convection–dispersion equation with first-order deposition kinetics. The results showed that the transport of the SP was less rapid than the transport of the DT whatever the flow velocity and the size distribution of the injected SP. The mean diameter of the recovered particles increases with flow rate. The longitudinal dispersion increases, respectively, with the increasing of the flow rates and the SP size distribution. The SP were more dispersive in the porous medium than the DT. The results further showed that the deposition kinetics depends strongly on the size of the particle transported and their distribution.

Keywords

Porous medium Transport Suspended particles Size distribution Deposition kinetics 

List of Symbols

Latin Symbols

BTCs

Breakthrough curves

\(C\)

DT/SP concentration in solution

\(C_0 \)

Initial concentration

\(C_\mathrm{R} \)

Relative concentration

\(d_{50}\)

Median diameter

\(D_0 \)

Molecular diffusion coefficient

\(D_\mathrm{L} \)

Longitudinal dispersion coefficient

DT

Dissolved tracer

\(K\)

Hydraulic conductivity

\(K_\mathrm{{dep}}\)

Deposition kinetics coefficient

\(L\)

Column length

\(M\)

Mass of DT/SP injected, equals \(V_\mathrm{{inj}} C_0 \)

\(m\)

A power coefficient (in \(D_\mathrm{L} =D_0 \tau ^{2}+\alpha _\mathrm{L} u^{m})\)

NTU

Nephelometric turbidity units

\(n\)

A power coefficient (in \(K_\mathrm{{dep}} =\alpha U^{n})\)

\(P_\mathrm{{ed}}\)

Diffusion Péclet number

\(P_\mathrm{e} \)

Dynamic Péclet number

\(Q\)

Flow rate

\(R\)

Recovery rate

SP

Suspended particles

\(t\)

Time

\(t_\mathrm{c}\)

Convection time

\(t_\mathrm{{DT}}\)

Residence time of DT

\(t_\mathrm{r}\)

Retardation factor, equals t\(_\mathrm{{SP}}/t_\mathrm{{DT}}\)

\(t_\mathrm{{SP}}\)

Residence time of SP

\(U\)

Darcy’s velocity

\(u\)

Average pore velocity

\(V_\mathrm{{inj}}\)

Injected volume

\(V_\mathrm{P}\)

Pore volume of the porous medium

\(x\)

Travel distance (column length)

Greek Symbols

\(\alpha \)

A constant (in \(K_\mathrm{{dep}} =\alpha U^{n})\)

\(\alpha _\mathrm{L}\)

Longitudinal dispersivity

\(\delta (t)\)

Dirac function

\(\beta \)

A power coefficient (in \(\alpha _\mathrm{L} =\kappa d_{50}^\beta )\)

\(\kappa \)

A constant (in \(\alpha _\mathrm{L} =\kappa d_{50}^\beta )\)

\(\tau \)

Tortuosity

References

  1. Ahfir, N.-D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.-P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15, 659–668 (2007)CrossRefGoogle Scholar
  2. Ahfir, N.-D., Benamar, A., Alem, A., Wang, H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Med. 76, 289–307 (2009)CrossRefGoogle Scholar
  3. Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.Q.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586 (2013)CrossRefGoogle Scholar
  4. Bear, J.: Dynamics of fluids in porous media. Dover Publications Inc, New York (1972)Google Scholar
  5. Benamar, A., Wang, H.Q., Ahfir, N.-D., Alem, A., Massei, N., Dupont, J.P.: Flow velocity effects on the transport and the deposition rate of suspended particles in a saturated porous medium. C. R. Geosci. 337, 497–504 (2005)CrossRefGoogle Scholar
  6. Bonelli, S., Brivois, O., Borghi, R., Benahmed, N.: On the modelling of piping erosion. C. R. Mecanique 334, 555–559 (2006)CrossRefGoogle Scholar
  7. Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10, 121–142 (2002)CrossRefGoogle Scholar
  8. Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37, 2242–2250 (2003)CrossRefGoogle Scholar
  9. de Marsily, G.: Quantitative Hydrogeology. Groundwater Hydrology for Engineers. Academic Press Inc, New York (1986)Google Scholar
  10. Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation: Measurement, Modeling, and Simulation. Butterworth-Heinemann, Oxford (1995)Google Scholar
  11. Frey, J.M., Schmitz, P., Dufreche, I., Gohr Pinheiro, I.: Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp. Porous Media 37, 25–54 (1999)CrossRefGoogle Scholar
  12. Gohr Pinheiro, I., Schmitz, P., Houi, D.: Particle capture in porous media when physico-chemical effects dominate. Chem. Eng. Sci. 54, 3801–3813 (1999)CrossRefGoogle Scholar
  13. Grolimund, D., Elimelich, M., Borcovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32, 3562–3569 (1998)CrossRefGoogle Scholar
  14. Hater, T., Wagner, S., Atwill, E.R.: Colloid transport and filtration of cryptosporidium parvum in sandy soils and aquifer sediments. Environ. Sci. Technol. 34, 62–70 (2000)CrossRefGoogle Scholar
  15. Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media: application to deep bed filtration. Indian Eng. Chem. 62, 8–35 (1970)CrossRefGoogle Scholar
  16. Hu, Q., Brusseau, M.L.: The effect of solute size on diffusive-dispersion transport in porous media. J. Hydrol. 158, 305–317 (1994)CrossRefGoogle Scholar
  17. Kanti Sen, T., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119, 71–96 (2006)CrossRefGoogle Scholar
  18. Keller, A.A., Auset, M.: A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Adv. Water Resour. 30, 1392–1407 (2007)CrossRefGoogle Scholar
  19. Koltz, D., Seiler, K.P., Moser, H., Neumaier, F.: Dispersivity and velocity relationship from laboratory and field experiments. J. Hydrol. 45, 169–184 (1980)CrossRefGoogle Scholar
  20. Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33, 1129–1137 (1997)CrossRefGoogle Scholar
  21. Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–194 (1999)CrossRefGoogle Scholar
  22. Massei, N., Lacroix, M., Wang, H.Q., Dupont, J.P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57, 21–39 (2002)CrossRefGoogle Scholar
  23. McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502 (1989)Google Scholar
  24. McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)CrossRefGoogle Scholar
  25. McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid-sorbed contaminants through soil. Part 1: general principales. Biosyst. Eng. 83, 255–273 (2002)CrossRefGoogle Scholar
  26. Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Petrol. Sci. Eng. 43, 163–181 (2004)CrossRefGoogle Scholar
  27. Niehren, S., Kinzelbach, W.: Artificial colloid tracer tests: development of a compact on-line microsphere counter and application to soil column experiments. J. Contam. Hydrol. 35, 249–259 (1998)CrossRefGoogle Scholar
  28. Pfannkuch, H.O.: Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux [Contribution to the study of miscible fluids displacements in a porous medium]. Rev. Inst. Fr. Pétrol. 18, 215–270 (1963)Google Scholar
  29. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A 107, 1–56 (1996)CrossRefGoogle Scholar
  30. Saiers, J.E.: Laboratory observations and mathematical modeling of colloid-facilitated contaminant transport in chemically heterogeneous systems. Water Resour. Res. 38(4), 1032 (2002). doi:10.1029/2001WR000320 CrossRefGoogle Scholar
  31. Vigneswaran, S., Suazo Ronillo, B.: A detailed investigation of physical and biological clogging during artificial recharge. Water Air Soil Pollut. 35, 119–140 (1987)CrossRefGoogle Scholar
  32. Vigneswaran, S., Jeyaseelan, S., Das Gupta, A.: A pilot-scale investigation of particle retention during artificial recharge. Water Air Soil Pollut. 25, 1–13 (1985)CrossRefGoogle Scholar
  33. Wang, H.Q.: Transferts de matières en milieu saturé: outils mathématiques et modélisation numérique [Mass transfer in saturated porous media: mathematical tools and numerical modelling]. Mémoire HDR, Université de Rouen, France (2001)Google Scholar
  34. Wang, H.Q., Crampon, N., Huberson, S., Garnier, J.M.: Linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection. J. Hydrol. 95, 143–154 (1987)CrossRefGoogle Scholar
  35. Wang, H.Q., Lacroix, M., Massei, N., Dupont, J.P.: Particle transport in porous medium: determination of hydrodispersive characteristics and deposition rates. C. R. Acad. Sci. Paris Sci. Terre Planèt. 331, 97–104 (2000)Google Scholar
  36. Weronski, P., Walz, J.Y., Elimelech, M.: Effect of depletion interactions on transport of colloidal particles in porous media. J. Colloid Interface Sci. 262, 372–383 (2003)CrossRefGoogle Scholar
  37. Xu, S.P., Saiers, J.E.: Colloid straining within water-saturated porous media: effect of colloid size nonuniformity. Water Resour. Res. 45, W05501 (2009). doi:10.1029/02008WR007258 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lyacine Bennacer
    • 1
    • 2
    • 3
  • Nasre-Dine Ahfir
    • 2
  • Abderrazak Bouanani
    • 3
  • Abdellah Alem
    • 2
  • Huaqing Wang
    • 2
  1. 1.Université d’AdrarAdrarAlgeria
  2. 2.LOMC, UMR 6294 CNRSUniversité du HavreLe Havre CedexFrance
  3. 3.Université Abou Bekr BelkaidTlemcenAlgeria

Personalised recommendations