Skip to main content
Log in

Semi-Analytical Solutions for a Partially Penetrated Well with Wellbore Storage and Skin Effects in a Double-Porosity System with a Gas Cap

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We have studied the effect of a constant top pressure on the pressure transient analysis of a partially penetrated well in an infinite-acting fractured reservoir with wellbore storage and skin factor effects. Semi-analytical solutions of a two-dimensional diffusivity equation have been obtained by using successive applications of the Laplace and modified finite Fourier sine transforms. Both pseudo-steady-state and transient exchanges between the matrix and the fractures have been considered. Solutions are presented that can be used to generate type curves for pressure transient analysis or can be used as a forward model in parameter estimation. The presented analysis has applications in well testing of fractured aquifers and naturally fractured oil reservoirs with a gas cap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{1}\) :

First constant of general solution (85)

\(A_{2}\) :

Second constant of general solution (85)

\(a_{n}\) :

Function of the variable of the modified finite Fourier sine transform

\(B_\mathrm{o}\) :

Oil formation volume factor

\(c_\mathrm{fo}\) :

Fracture compressibility of the oil zone (LT\(^{2}\)/M)

\(c_\mathrm{mo}\) :

Matrix compressibility of the oil zone (LT\(^{2}\)/M)

\(C_\mathrm{s}\) :

Wellbore storage coefficient (L\(^{4}\)T\(^{2}\)/M)

\(C_\mathrm{sD}\) :

Dimensionless wellbore storage coefficient

\(f(\mathrm{s})\) :

Function of the variable of the Laplace transform

\(h_\mathrm{D}\) :

Ratio of the perforated thickness to the total thickness of oil zone (i.e., dimensionless perforation interval)

\(h_\mathrm{m}\) :

Thickness of the matrix block (L)

\(h_\mathrm{o}\) :

Total thickness of the oil zone (L)

\(h_\mathrm{oD}\) :

Dimensionless total thickness of the oil zone

\(h_\mathrm{p}\) :

Perforated thickness of the oil zone (L)

\(h_\mathrm{pD}\) :

Dimensionless perforated thickness of the oil zone

\(I_{0}\) :

Modified Bessel function of the first kind of order 0

\(k_\mathrm{fD}\) :

Horizontal-to-vertical fracture permeability ratio

\(k_\mathrm{fh}\) :

Horizontal fracture permeability (L\(^{2}\))

\(k_\mathrm{fv}\) :

Vertical fracture permeability (L\(^{2}\))

\(k_\mathrm{m}\) :

Matrix permeability (L\(^{2}\))

\(K_{0}\) :

Modified Bessel function of the second kind of order 0

\(K_{1}\) :

Modified Bessel function of the second kind of order 1

\(n\) :

Variable of the modified finite Fourier sine transform

\(p_\mathrm{f}\) :

Fracture pressure (M/LT\(^{2}\))

\(p_\mathrm{fD}\) :

Dimensionless fracture pressure

\(\bar{{p}}_{\mathrm{fD}} \) :

Dimensionless fracture pressure in the Laplace domain

\(\tilde{\bar{{p}}}_\mathrm{fD} \) :

Modified finite Fourier sine transform of \(\bar{{p}}_{fD}\)

\(p_\mathrm{f,S}\) :

Fracture pressure including skin effect (M/LT\(^{2}\))

\(p_\mathrm{fD,S}\) :

Dimensionless fracture pressure including skin effect

\(p_\mathrm{i}\) :

Initial pressure in the oil zone of the fractured reservoir [M/LT\(^{2}\)]

\(p_\mathrm{m}\) :

Matrix pressure (M/LT\(^{2}\))

\(p_{\mathrm{m}D}\) :

Dimensionless matrix pressure

\(\bar{{p}}_{\mathrm{mD}} \) :

Dimensionless matrix pressure in the Laplace domain

\(p_{\mathrm{wD}}\) :

Dimensionless average pressure response of the well

\(\bar{{p}}_{\mathrm{wD}} \) :

Dimensionless average pressure at the wellbore in the Laplace domain

\(q_\mathrm{o}\) :

Oil flow rate (L\(^{3}\)/T)

\(r\) :

Radius (L)

\(r_\mathrm{D}\) :

Dimensionless radius

\(r_\mathrm{w}\) :

Well radius (L)

\(r_{\mathrm{wD}}\) :

Dimensionless wellbore radius

s:

Variable of the Laplace transform

\(S\) :

Skin factor

\(S_\mathrm{fo}\) :

Fracture storativity of the oil zone (L\(^{2}\hbox {T}^{2}\)/M)

\(S_\mathrm{mo}\) :

Matrix storativity of the oil zone (L\(^{2}\hbox {T}^{2}\)/M)

\(S_\mathrm{to}\) :

Total storativity of the oil zone (L\(^{2}\hbox {T}^{2}/M\))

\(t\) :

Time (T)

\(t_\mathrm{D}\) :

Dimensionless time

\(z\) :

Vertical direction in the oil zone of the fractured reservoir (L)

\(z_\mathrm{m}\) :

Vertical coordinate of the matrix block (L)

\(z_\mathrm{D}\) :

Dimensionless vertical direction in the oil zone of the fractured reservoir

\(z_{\mathrm{mD}}\) :

Dimensionless vertical coordinate of the matrix block

cos:

Cosine

ln:

Natural logarithm

\(\ell _{t_\mathrm{D}} \) :

Laplace transform with respect to \(t_\mathrm{D}\)

\(\ell _s^{-1} \) :

Inverse Laplace transform with respect to s

\(\wp _{z_\mathrm{D} } \) :

Modified finite Fourier sine transform with respect to \(z_\mathrm{D}\)

\(\wp _n^{-1} \) :

Inverse modified finite Fourier sine transform with respect to \(n\)

\(\phi _\mathrm{fo}\) :

Fracture porosity of the oil zone

\(\phi _\mathrm{mo}\) :

Matrix porosity of the oil zone

\(\eta \) :

Function of s and \(a_{n}\)

\(\lambda \) :

Matrix–fracture interporosity flow coefficient

\(\sigma \) :

Shape factor (1/L\(^{2}\))

\(\mu _\mathrm{o}\) :

Oil viscosity (M/LT)

\(\omega \) :

Storativity ratio

D:

Dimensionless

f:

Fracture

i:

Initial

m:

Matrix

\(n\) :

Variable of the modified finite Fourier sine transform

o:

Oil

p:

Perforated

s:

Storage

s:

Variable of the Laplace transform

S:

Skin

\(t_\mathrm{D}\) :

Dimensionless time

w:

Well

\(z_\mathrm{D}\) :

Dimensionless vertical direction

0,1:

Orders 0 and 1 for modified Bessel functions of the first and second kinds

1,2:

First and second constants of the general solution (85)

\(^{-}\) :

Laplace transform

\(^{-1}\) :

Inverse of Laplace transform or modified finite Fourier sine transform

\(^{\sim }\) :

Modified finite Fourier sine transform

References

  • Abdassah, D., Ershaghi, I.: Triple-porosity systems for representing naturally fractured reservoirs. SPE Form. Eval. 1(2), 113–127 (1986)

    Google Scholar 

  • Agarwal, R.G., Al-Hussainy, R.: An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment. Soc. Pet. Eng. J. 10(3), 279–290 (1970)

    Google Scholar 

  • Al-Bemani, A.S., Ershaghi, I.: Gas-cap effects in pressure-transient response of naturally fractured reservoirs. SPE Form. Eval. 12(1), 40–46 (1997)

    Google Scholar 

  • Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 852–864 (1960)

    Article  Google Scholar 

  • Bilhartz, Jr H.L., Ramey, Jr H.J.: The combined effects of storage, skin, and partial penetration on well test analysis. In: Paper SPE 6753, Presented at the SPE Annual Fall Technical Conference and Exhibition, Denver, Colorado (1977)

  • Biryukov, D., Kuchuk, F.J.: Transient pressure behavior of reservoirs with discrete conductive faults and fractures. Transp. Porous Med. 95(1), 239–268 (2012)

    Google Scholar 

  • Bourdet, D., Gringarten, A.C.: Determination of fissure volume and block size in fractured reservoirs by type-curve analysis. In: Paper SPE 9293, Presented at the SPE Annual Technical Conference and Exhibition, Dallas (1980)

  • Buhidma, I.M., Raghavan, R.: Transient pressure behavior of partially penetrating wells subject to bottomwater drive. J. Pet. Technol. 32(7), 1251–1261 (1980)

    Google Scholar 

  • Bui, T.D., Mamora, D.D., Lee, W.J.: Transient pressure analysis for partially penetrating wells in naturally fractured reservoirs. In: Paper SPE 60289, Presented at the SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium and Exhibition, Denver (2000)

  • Cassiani, G., Kabala, Z.J.: Flowing partially penetrating well: solution to a mixed-type boundary value problem. Adv. Water Resour. 23(1), 59–68 (1999)

    Article  Google Scholar 

  • Chen, Z.X.: Transient flow of slightly compressible fluids through double-porosity, double-permeability systems: a state-of-the-art review. Transp. Porous Media 4(2), 147–184 (1989)

    Article  Google Scholar 

  • Chen, F.F., Jia, Y.L., Zhang, F.X.: Partial perforated filtration model and the typical curve of well test for dual media. Petroleum Geol. Oilfield Dev. Daqing 27(6), 87–90 (2008)

    Google Scholar 

  • Chen, H.Y., Poston, S.W., Raghavan, R.: An application of the product solution principle for instantaneous source and Green’s functions. SPE Form. Eval. 6(2), 161–167 (1991)

  • Chu, W.C., Chen, J.C., Reynolds, A.C., Raghavan, R.: On the analysis of well test data influenced by wellbore storage, skin, and bottomwater drive. J. Pet. Technol. 36(11), 1991–2001 (1984)

    Google Scholar 

  • Da Prat, G.: Well Test Analysis for Fractured Reservoir Evaluation. Elsevier, New York (1990)

    Google Scholar 

  • de Swaan, O.A.: Analytic solutions for determining naturally fractured reservoir properties by well testing. Soc. Pet. Eng. J. 16(3), 117–122 (1976)

    Google Scholar 

  • De Smedt, F.: Analytical solution for constant-rate pumping test in fissured porous media with double-porosity behaviour. Transp. Porous Media 88(3), 479–489 (2011)

    Article  Google Scholar 

  • Dougherty, D.E., Babu, D.K.: Flow to a partially penetrating well in a double porosity reservoir. Water Resour. Res. 20(8), 1116–1122 (1984)

    Article  Google Scholar 

  • Earlougher Jr, R.C., Kersch, K.M.: Analysis of short-time transient test data by type-curve matching. J. Pet. Technol. 26(7), 793–800 (1974)

  • Fuentes-Cruz, G., Camacho-Velázquez, R., Vásquez-Cruz, M.: Pressure transient and decline curve behaviors for partially penetrating wells completed in naturally fractured–vuggy reservoirs. In: Paper SPE 92116, presented at the SPE International Petroleum Conference in Mexico, Puebla (2004)

  • Gerami, S., Pooladi-Darvish, M.: An early-time model for drawdown testing of a hydrate-capped gas reservoir. SPE Reserv. Eval. Eng. 12(4), 595–609 (2009)

    Google Scholar 

  • Gringarten, A.C., Ramey Jr, H.J.: The use of source and Green’s functions in solving unsteady-flow problems in reservoirs. Soc. Pet. Eng. J. 13(5), 285–296 (1973)

  • Hamm, S.Y., Bidaux, P.: Dual-porosity fractal models for transient flow analysis in fissured rocks. Water Resour. Res. 32(9), 2733–2745 (1996)

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M.: Comparison of different numerical Laplace inversion methods for engineering applications. Appl. Math. Comput. 189(2), 1966–1981 (2007)

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M., Atabay, S.: Shape factor in the drawdown solution for well testing of dual-porosity systems. Adv. Water Resour. 32(11), 1652–1663 (2009)

    Article  Google Scholar 

  • Hawkins Jr, M.F.: A note on the skin effect. J. Pet. Technol. 8(12), 65–66 (1956)

    Google Scholar 

  • Houzé, O., Viturat, D., Fjaere, O.S.: Dynamic Flow Analysis. KAPPA Corporation, Paris (2007)

    Google Scholar 

  • Jalali, Y., Ershaghi, I.: A unified type curve approach for pressure transient analysis of naturally fractured reservoirs. In: Paper SPE 16778, Presented at the SPE Annual Technical Conference and Exhibition, Dallas (1987)

  • Jia, Y.L., Fan, X.Y., Nie, R.S., Huang, Q.H., Jia, Y.L.: Flow modeling of well test analysis for porous–vuggy carbonate reservoirs. Transp. Porous Media 97(2), 253–279 (2013)

    Article  Google Scholar 

  • Kabala, Z.J.: Sensitivity analysis of a pumping test on a well with wellbore storage and skin. Adv. Water Resour. 24(5), 483–504 (2001)

    Article  Google Scholar 

  • Kazemi, H.: Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. Soc. Pet. Eng. J. 9(4), 451–462 (1969)

    Google Scholar 

  • Lods, G., Gouze, P.: WTFM, software for well test analysis in fractured media combining fractional flow with double porosity and leakance approaches. Comput. Geosci. 30, 937–947 (2004)

    Article  Google Scholar 

  • Mashayekhizadeh, V., Dejam, M., Ghazanfari, M.H.: The application of numerical Laplace inversion methods for type curve development in well testing: a comparative study. Petrol. Sci. Technol. 29(7), 695–707 (2011)

    Article  Google Scholar 

  • Moench, A.F.: Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour. Res. 20(7), 831–846 (1984)

    Article  Google Scholar 

  • Moench, A.F.: Transient flow to a large-diameter well in an aquifer with storative semiconfining layers. Water Resour. Res. 21(8), 1121–1131 (1985)

    Article  Google Scholar 

  • Najurieta, H.L.: A theory for pressure transient analysis in naturally fractured reservoirs. J. Pet. Technol. 32(7), 1241–1250 (1980)

    Google Scholar 

  • Nie, R.S., Meng, Y.F., Jia, Y.L., Zhang, F.X., Yang, X.T., Niu, X.N.: Dual porosity and dual permeability modeling of horizontal well in naturally fractured reservoir. Transp. Porous Media 92(1), 213–235 (2012)

    Google Scholar 

  • Ozkan, E., Ohaeri, U., Raghavan, R.: Unsteady flow to a well produced at a constant pressure in a fractured reservoir. SPE Form. Eval. 2(2), 186–200 (1987)

    Google Scholar 

  • Ozkan, E., Raghavan, R.: New solutions for well-test-analysis problems: part 1: analytical considerations. SPE Form. Eval. 6(3), 359–368 (1991a)

    Google Scholar 

  • Ozkan, E., Raghavan, R.: New solutions for well-test-analysis problems: part 2: computational considerations and applications. SPE Form. Eval 6(3), 369–378 (1991b)

    Google Scholar 

  • Pasandi, M., Samani, N., Barry, D.A.: Effect of wellbore storage and finite thickness skin on flow to a partially penetrating well in a phreatic aquifer. Adv. Water Resour. 31(2), 383–398 (2008)

    Article  Google Scholar 

  • Peaceman, D.W.: Convection in fractured reservoirs: the effect of matrix-fissure transfer on the instability of a density inversion in a vertical fissure. Soc. Pet. Eng. J. 16(5), 269–280 (1976)

    Google Scholar 

  • Ramey Jr, H.J., Agarwal, R.G.: Annulus unloading rates as influenced by wellbore storage and skin effect. Soc. Pet. Eng. J. 12(5), 453–462 (1972)

    Google Scholar 

  • Sabet, M.A.: Well Test Analysis. Gulf Publishing Company, Houston (1991)

    Google Scholar 

  • Saidi, A.M.: Reservoir Engineering of Fractured Reservoirs, Total edn. Press, Paris (1987)

    Google Scholar 

  • Saidi, A.M.: Simulation of naturally fractured reservoirs. In: Paper SPE 12270, Presented at the SPE Reservoir Simulation Symposium, San Francisco (1983)

  • Sandal, H.M., Horne, R.N., Ramey, Jr H.J., Williamson, J.W.: Interference testing with wellbore storage and skin effects at the produced well. In: Paper SPE 7454, Presented at the SPE Annual Fall Technical Conference and Exhibition, Houston (1978)

  • Sethi, R.: A dual-well step drawdown method for the estimation of linear and non-linear flow parameters and wellbore skin factor in confined aquifer systems. J. Hydrol. 400, 187–194 (2011)

    Article  Google Scholar 

  • Serra, K., Reynolds, A.C., Raghavan, R.: New pressure transient analysis methods for naturally fractured reservoirs. J. Pet. Technol. 35(12), 2271–2283 (1983)

    Google Scholar 

  • Slimani, K., Tiab, D.: Pressure transient analysis of partially penetrating wells in a naturally fractured reservoir. J. Can. Pet. Technol. 47(5), 63–69 (2008)

    Google Scholar 

  • Stehfest, H.: Algorithm 368: numerical inversion of Laplace transform. Commun. Assoc. Comput. Math. 13(1), 47–49 (1970)

    Google Scholar 

  • Stewart, G., Asharsobbi, F.: Well test interpretation for naturally fractured reservoirs. In: Paper SPE 18173, Presented at the SPE Annual Technical Conference and Exhibition, Houston (1988)

  • Streltsova, T.D.: Pressure drawdown in a well with limited flow entry. J. Pet. Technol. 31(11), 1469–1476 (1979)

    Google Scholar 

  • Streltsova, T.D.: Pressure transient analysis for afterflow-dominated wells producing from a reservoir with a gas cap. J. Pet. Technol. 33(4), 743–754 (1981)

    Google Scholar 

  • Streltsova, T.D.: Well pressure behavior of a naturally fractured reservoir. Soc. Pet. Eng. J. 23(5), 769–780 (1983)

    Google Scholar 

  • Tariq, S.M., Ramey, Jr H.J.: Drawdown behavior of a well with storage and skin effect communicating with layers of different radii and other characteristics. In: Paper SPE 7453, Presented at the SPE Annual Fall Technical Conference and Exhibition, Houston (1978)

  • van Everdingen, A.F.: The skin effect and its influence on the productive capacity of a well. Petroleum Trans. AIME 198, 171–176 (1953)

    Google Scholar 

  • van Everdingen, A.F., Hurst, W.: The application of the Laplace transformation to flow problems in reservoirs. Petroleum Trans. AIME 186, 305–324 (1949)

    Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(3), 245–255 (1963)

    Google Scholar 

  • Wattenbarger, R.A., Ramey Jr, H.J.: An investigation of wellbore storage and skin effect in unsteady liquid flow: II. finite difference treatment. Soc. Pet. Eng. J 10(3), 291–297 (1970)

    Google Scholar 

  • Yang, Y.J., Gates, T.M.: Wellbore skin effect in slug-test data analysis for low-permeability geologic materials. Ground Water 35(6), 931–937 (1997)

    Article  Google Scholar 

  • Yao, Y., Wu, Y.S., Zhang, R.: The transient flow analysis of fluid in a fractal, double-porosity reservoir. Transp. Porous Media 94(1), 175–187 (2012)

    Article  Google Scholar 

  • Zimmerman, R.W., Chen, G., Hadgu, T., Bodvarsson, G.S.: A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow. Water Resour. Res. 29(7), 2127–2137 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ali M. Saidi for his encouragement and insights. The first author is appreciative of the support of his parents, Dariush Dejam and Zahra Fakhari. They have been a source of encouragement and inspiration. Financial support of NSERC/AERI/Foundation CMG and iCORE Chairs Funds is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hassanzadeh.

Appendix: Derivation of Solutions

Appendix: Derivation of Solutions

The details of the derivations for obtaining the dimensionless average pressure response of a partially penetrated well in the oil zone of an infinite-acting double-porosity reservoir including wellbore storage and skin effects are presented in this appendix.

First, we define the Laplace transforms with respect to \(t_\mathrm{D}\) for dimensionless fracture and matrix pressures, respectively, as follows:

$$\begin{aligned} \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})&= \ell _{t_\mathrm{D} } \{p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},t_\mathrm{D})\}=\int \limits _0^{+\infty } {e^{-st_\mathrm{D} }p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},t_\mathrm{D} ) dt_\mathrm{D} } \end{aligned}$$
(41)
$$\begin{aligned} \bar{{p}}_\mathrm{mD} (z_\mathrm{mD},\mathrm{s})&= \ell _{t_\mathrm{D} } \{p_\mathrm{mD} (z_\mathrm{mD} ,t_\mathrm{D} )\}=\int \limits _0^{+\infty } {e^{-st_\mathrm{D} }p_\mathrm{mD} (z_\mathrm{mD},t_\mathrm{D}) dt_\mathrm{D} } \end{aligned}$$
(42)

where \(\bar{{p}}_\mathrm{fD}\) and \(\bar{{p}}_\mathrm{mD}\) are the dimensionless fracture and matrix pressures in the Laplace domain, respectively; “s” is the variable of the Laplace transform; \(\ell _{t_\mathrm{D} }\) is the sign for the Laplace transform with respect to \(t_\mathrm{D}\).

After applying the Laplace transform with respect to \(t_\mathrm{D}\) for the boundary conditions in Eqs. (2529), we have:

$$\begin{aligned}&\quad \left( {\frac{\partial \bar{{p}}_{\mathrm{{fD}}} (r_{\mathrm{{D}}},z_{\mathrm{{D}}}, \mathrm{s})}{\partial r_{\mathrm{{D}}} }} \right) _{r_{\mathrm{{D}}} ={r_{\mathrm{{wD}}}}} =0\quad \quad 0<z_D <h_{\mathrm{{oD}}} -h_{\mathrm{{pD}}}\end{aligned}$$
(43)
$$\begin{aligned}&\quad \left\{ {\begin{array}{l} \bar{{p}}_{\mathrm{{fD,S}}} (r_{\mathrm{{wD}}},z_{\mathrm{{D}}},\mathrm{s})\!=\!\left[ {\bar{{p}}_{\mathrm{{fD}}} (r_{\mathrm{{D}}},z_{\mathrm{{D}}}, \mathrm{s})-h_{\mathrm{{D}}} \left( {\frac{\partial \bar{{p}}_{\mathrm{{fD}}} (r_{\mathrm{{D}}},z_{\mathrm{{D}}},\,\mathrm{s})}{\partial r_{\mathrm{{D}}}}} \right) {S}} \right] _{r_{\mathrm{{D}}} ={r_{\mathrm{{wD}}}}} \\ s C_{\mathrm{{sD}}} \bar{{p}}_{\mathrm{{fD},\mathrm{S}}} (r_{\mathrm{{wD}}},z_{\mathrm{{D}}}, \mathrm{s})-h_{\mathrm{{D}}} \left( {\frac{\partial \bar{{p}}_{\mathrm{{fD}}} (r_{\mathrm{{D}}} ,z_{D},\, \mathrm{s})}{\partial r_D }} \right) _{r_{\mathrm{{D}}} ={r_{\mathrm{{wD}}}}} =\frac{1}{\mathrm{{s}}} \\ \end{array}} \right. \, h_{\mathrm{{oD}}}\! -\!h_{\mathrm{{pD}}} <z_D \!<\!h_{\mathrm{{oD}}}\nonumber \\ \end{aligned}$$
(44)
$$\begin{aligned}&\bar{{p}}_\mathrm{fD} (+\infty ,z_\mathrm{D},\mathrm{s})=0\end{aligned}$$
(45)
$$\begin{aligned}&\bar{{p}}_\mathrm{fD} (r_\mathrm{D},\mathrm{0,s})=0\end{aligned}$$
(46)
$$\begin{aligned}&\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D}, h_\mathrm{oD},\mathrm{s})}{\partial z_\mathrm{D} }=0 \end{aligned}$$
(47)

Applying the Laplace transform with respect to \(t_\mathrm{D}\) to Eq. (23) results in:

$$\begin{aligned}&\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D}, z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }+\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial z_\mathrm{D}^2 } \nonumber \\&\quad =k_\mathrm{fD} \left[ {\omega \ell _{t_\mathrm{D} } \left\{ {\frac{\partial p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},t_\mathrm{D} )}{\partial t_\mathrm{D} }} \right\} +(1-\omega ) \ell _{t_\mathrm{D} } \left\{ {\frac{\partial p_\mathrm{mD} (z_\mathrm{mD},t_\mathrm{D} )}{\partial t_\mathrm{D} }} \right\} } \right] \end{aligned}$$
(48)

Where

$$\begin{aligned} \ell _{t_\mathrm{D} } \left\{ {\frac{\partial p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},t_\mathrm{D})}{\partial t_\mathrm{D} }} \right\} =s\bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})-p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},0) \end{aligned}$$
(49)

And

$$\begin{aligned} \ell _{t_\mathrm{D} } \left\{ {\frac{\partial p_\mathrm{mD} (z_\mathrm{mD} ,t_\mathrm{D} )}{\partial t_\mathrm{D} }} \right\} =s\bar{{p}}_\mathrm{mD} (z_\mathrm{mD}, \mathrm{s})-p_\mathrm{mD} (z_\mathrm{mD} ,0) \end{aligned}$$
(50)

Using Eqs. (24) and (49), Eq. (50) reduces to:

$$\begin{aligned} \ell _{t_\mathrm{D} } \left\{ {\frac{\partial p_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},t_\mathrm{D})}{\partial t_\mathrm{D} }} \right\} = \mathrm{s} \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s}) \end{aligned}$$
(51)

And

$$\begin{aligned} \ell _{t_\mathrm{D}} \left\{ {\frac{\partial p_\mathrm{mD} (z_\mathrm{mD},t_\mathrm{D} )}{\partial t_\mathrm{D} }} \right\} =\mathrm{s} \bar{{p}}_\mathrm{mD} (z_\mathrm{mD},\mathrm{s}) \end{aligned}$$
(52)

Combining Eqs. (48), (51) and (52), we obtain:

$$\begin{aligned} \frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }+\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial z_\mathrm{D}^2 }\nonumber \\ =k_\mathrm{fD} [\omega _\mathrm{s} \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})+(1-\omega )\mathrm{s} \bar{{p}}_\mathrm{mD} (z_\mathrm{mD},\mathrm{s})] \end{aligned}$$
(53)

The following relation between \(\bar{{p}}_\mathrm{fD}\) and \(\bar{{p}}_\mathrm{mD} \) can be obtained for the pseudo-steady-state matrix–fracture exchange (Warren and Root 1963):

$$\begin{aligned} \bar{{p}}_\mathrm{mD} (z_\mathrm{mD}, \mathrm{s})=\frac{\lambda }{\lambda +(1-\omega )\mathrm{s} }\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s}) \end{aligned}$$
(54)

Also, the following relation between \(\bar{{p}}_\mathrm{fD}\) and \(\bar{{p}}_\mathrm{mD}\) can be obtained for the transient matrix–fracture exchange (Serra et al. 1983; Ozkan et al. 1987; Stewart and Asharsobbi 1988; Da Prat 1990; Sabet 1991; Al-Bemani and Ershaghi 1997; Hassanzadeh et al. 2009):

$$\begin{aligned} \bar{{p}}_\mathrm{mD} (z_\mathrm{mD}, \mathrm{s})=\frac{\tanh \left( {\sqrt{\frac{3(1-\omega )\mathrm{s} }{\lambda }}} \right) }{\sqrt{\frac{3(1-\omega )\mathrm{s} }{\lambda }}}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s}) \end{aligned}$$
(55)

By inserting Eqs. (54) and (55) into Eq. (53), it is possible to arrive at:

$$\begin{aligned} \frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }+\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial z_\mathrm{D}^2 }=k_\mathrm{fD} \mathrm{s} f(\mathrm{s} )\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})\nonumber \\ \end{aligned}$$
(56)

where \(f (\mathrm{s} )\) for the pseudo-steady-state matrix–fracture exchange is presented by (Warren and Root 1963):

$$\begin{aligned} f(s)=\omega +\frac{(1-\omega )\lambda }{\lambda +(1-\omega )s} \end{aligned}$$
(57)

and \(f (\mathrm{s} )\) for the transient matrix–fracture exchange, assuming a slab-shaped matrix block, is given by (Serra et al. 1983; Ozkan et al. 1987; Stewart and Asharsobbi 1988; Da Prat 1990; Sabet 1991; Al-Bemani and Ershaghi 1997; Hassanzadeh et al. 2009):

$$\begin{aligned} f(\mathrm{s} )=\omega +\sqrt{\frac{\lambda (1-\omega )}{3\mathrm{s} } } \tanh \left( {\sqrt{\frac{3(1-\omega )\mathrm{s} }{\lambda }}} \right) \end{aligned}$$
(58)

where \(\lambda \) is the matrix–fracture interporosity flow coefficient, defined as (Warren and Root 1963):

$$\begin{aligned} \lambda =\sigma \frac{r_\mathrm{w}^2 k_\mathrm{m} }{k_\mathrm{fh} } \end{aligned}$$
(59)

where \(\sigma \) is the matrix–fracture transfer coefficient or the so-called shape factor, and \(k_\mathrm{m}\) is the matrix permeability.

The modified finite Fourier sine transform with respect to \(z_\mathrm{D}\) is defined for the dimensionless fracture pressure as follows:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})=\wp _{z_\mathrm{D} } \{\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})\}=\int \limits _0^{h_\mathrm{oD} } {\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})\sin (a_n z_\mathrm{D} ) dz_\mathrm{D} } \end{aligned}$$
(60)

where \(\tilde{\bar{{p}}}_\mathrm{fD} \) is the modified finite Fourier sine transform of \(\bar{{p}}_\mathrm{fD} ,\,n\) is the variable of the modified finite Fourier sine transform, \(\wp _{z_\mathrm{D} }\) is the sign for the modified finite Fourier sine transform with respect to \(z_\mathrm{D}\), and \(a_{n}\) is a function of the variable of the modified finite Fourier sine transform, defined as:

$$\begin{aligned} a_n =\left( {n-\frac{1}{2}} \right) \frac{\pi }{h_\mathrm{oD} },\quad \quad \quad n=1, 2, 3, \ldots \end{aligned}$$
(61)

By applying the modified finite Fourier sine transform with respect to \(z_\mathrm{D}\) for the inner and outer boundary conditions (44) and (45), which are defined in the Laplace domain, we have:

$$\begin{aligned}&\int \limits _0^{h_\mathrm{oD} } {\bar{{p}}_\mathrm{fD,S} (r_\mathrm{wD} ,z_\mathrm{D},\mathrm{s})\sin (a_n z_\mathrm{D}) dz_\mathrm{D} } =\left[ {\int \limits _0^{h_\mathrm{oD} } {[\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})]_{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] \nonumber \\&\quad -h_\mathrm{D} \left[ {\int \limits _0^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] { S} \end{aligned}$$
(62)
$$\begin{aligned}&\quad \mathrm{s} C_\mathrm{sD} \left[ {\int \limits _0^{h_\mathrm{oD} } {\bar{{p}}_\mathrm{fD,S} (r_\mathrm{wD},z_\mathrm{D},\mathrm{s})\sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] \nonumber \\&\qquad \qquad -h_\mathrm{D} \left[ {\int \limits _0^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}}} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] = \quad \left[ {\int \limits _0^{h_\mathrm{oD} } {\frac{1}{\mathrm{s} }\sin (a_n z_\mathrm{D}) dz_\mathrm{D}} } \right] \nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned}&\qquad \qquad \int \limits _0^{h_\mathrm{oD} } {\bar{{p}}_\mathrm{fD} (+\infty ,z_\mathrm{D},\mathrm{s})\sin (a_n z_\mathrm{D}) dz_\mathrm{D} } =\tilde{\bar{{p}}}_\mathrm{fD} (+\infty ,n,\mathrm{s})=0 \end{aligned}$$
(64)

The integrals within interval 0 \(< {z}_\mathrm{D}< h_\mathrm{oD}\), which includes \([{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}/{\partial r_\mathrm{D} }]_{r_\mathrm{D} =r_\mathrm{wD} } \), in Eqs. (62) and (63) are partitioned into two integrals for non-perforated interval, 0 \(< z_\mathrm{D}< h_\mathrm{oD}-h_\mathrm{pD}\), and perforated interval, \(h_\mathrm{oD}-h_\mathrm{pD}< z_\mathrm{D } < h_\mathrm{oD}\), as follows:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})&= [\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})]_{r_\mathrm{D} =r_\mathrm{wD} } \nonumber \\&-h_\mathrm{D} \left[ \int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}}} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\right. \nonumber \\&\left. +\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } \right] {S} \end{aligned}$$
(65)
$$\begin{aligned}&sC_\mathrm{sD} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s}) \nonumber \\&\quad - h_\mathrm{D} \left[ \int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}}} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\right. \nonumber \\&\quad \left. +\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D}}} \right) _{r_\mathrm{D }=r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } \right] =\frac{1}{s a_n }\qquad \end{aligned}$$
(66)

Combination of Eqs. (43), (65) and (66) results in:

$$\begin{aligned}&\tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})=[\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})]_{r_\mathrm{D} =r_\mathrm{wD} } \nonumber \\&\quad -h_\mathrm{D} \left[ {\int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {(0)\sin (a_n z_\mathrm{D}) dz_\mathrm{D} } +\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] {S}\nonumber \\ \end{aligned}$$
(67)
$$\begin{aligned}&\quad sC_\mathrm{sD} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})-h_\mathrm{D} \left[ \int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {(0)\sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\right. \nonumber \\&\qquad \left. +\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D}} \right] =\frac{1}{\mathrm{s} a_n } \end{aligned}$$
(68)

By simplifying Eqs. (67) and (68), it is possible to arrive at:

$$\begin{aligned}&\tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})=[\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})]_{r_\mathrm{D} =r_\mathrm{wD} } -h_\mathrm{D} \nonumber \\&\quad \left[ {\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] S\end{aligned}$$
(69)
$$\begin{aligned}&s C_\mathrm{sD} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,\mathrm{s})-h_\mathrm{D} \left[ {\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } } \right] =\frac{1}{\mathrm{s}, a_n }\nonumber \\ \end{aligned}$$
(70)

In order to compute the integrals in Eqs. (69) and (70), it is necessary to differentiate with respect to \(r_{D}\) from both sides of Eq. (60) as follows:

$$\begin{aligned} \frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial r_\mathrm{D} }=\int \limits _0^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } \end{aligned}$$
(71)

It is possible to write Eq. (31) at \(r_\mathrm{D}=r_\mathrm{wD}\):

$$\begin{aligned} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } =\int \limits _0^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } \end{aligned}$$
(72)

The integral within interval 0 \(< {z}_\mathrm{D} < h_\mathrm{oD}\) in right hand side of Eq. (72) is partitioned into two different integrals for non-perforated interval, 0 \(< z_\mathrm{D}< h_\mathrm{oD}-h_\mathrm{pD}\), and perforated interval, \(h_\mathrm{oD}-h_\mathrm{pD} < z_\mathrm{D }< h_\mathrm{oD}\), as following:

$$\begin{aligned} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} }&= \int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} } \nonumber \\&+\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\qquad \end{aligned}$$
(73)

Combination of Eqs. (43) and (73) leads to:

$$\begin{aligned} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} }&= \int \limits _0^{h_\mathrm{oD} -h_\mathrm{pD} } {(0)\sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\nonumber \\&+\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D} }\qquad \end{aligned}$$
(74)

After simplification, Eq. (74) turns to:

$$\begin{aligned} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } =\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\left( {\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D} ,z_\mathrm{D},\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } \sin (a_n z_\mathrm{D}) dz_\mathrm{D}}\nonumber \\ \end{aligned}$$
(75)

Combination of Eqs. (69), (70) and (75) results in:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,\mathrm{s})=\left[ {\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})-h_\mathrm{D} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) S} \right] _{r_\mathrm{D} =r_\mathrm{wD} }\end{aligned}$$
(76)
$$\begin{aligned} s C_\mathrm{sD} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,s)-h_\mathrm{D} \left( {\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{\partial r_\mathrm{D} }} \right) _{r_\mathrm{D} =r_\mathrm{wD} } =\frac{1}{\mathrm{s}a_n } \end{aligned}$$
(77)

Applying the modified finite Fourier sine transform with respect to \(z_\mathrm{D}\) to Eq. (56), which is defined in the Laplace domain, results in:

$$\begin{aligned} \frac{\partial ^{2}\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{\partial r_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,s)}{\partial r_\mathrm{D} }+\wp _{z_\mathrm{D} } \left\{ {\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial z_\mathrm{D}^2 }} \right\} =k_\mathrm{fD} \mathrm{s} f(\mathrm{s}) \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})\nonumber \\ \end{aligned}$$
(78)

where

$$\begin{aligned} \wp _{z_\mathrm{D} } \left\{ {\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial z_\mathrm{D}^2 }} \right\} =-a_n^2 \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})+a_n \bar{{p}}_\mathrm{fD} (r_\mathrm{D},0,\mathrm{s})-(-1)^{n}\frac{\partial \bar{{p}}_\mathrm{fD} (r_\mathrm{D},h_\mathrm{oD},\mathrm{s})}{\partial z_\mathrm{D}}\nonumber \\ \end{aligned}$$
(79)

By applying the boundary conditions at the top \((z_\mathrm{D} = 0)\) and bottom \((z_\mathrm{D} = h_\mathrm{oD})\) of the oil zone of an infinite-acting fractured reservoir in the Laplace domain, i.e., Eqs. (46) and (47), it is possible to simplify Eq. (79) to:

$$\begin{aligned} \wp _{z_\mathrm{D} } \left\{ {\frac{\partial ^{2}\bar{{p}}_\mathrm{fD} (r_\mathrm{D},z_\mathrm{D},\mathrm{s})}{\partial z_\mathrm{D}^2 }} \right\} =-a_n^2 \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s}) \end{aligned}$$
(80)

After inserting Eq. (80) into Eq. (79) and replacing \(\partial \) by \(d\), we arrive at:

$$\begin{aligned} \frac{d^{2}\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{dr_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{d\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{dr_\mathrm{D}}-a_\mathrm{n}^2 \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})=k_\mathrm{fD} \mathrm{s}f(\mathrm{s}) \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s}) \end{aligned}$$
(81)

With some rearrangements, Eq. (81) becomes:

$$\begin{aligned} \frac{d^{2}\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})}{dr_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{d\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{dr_\mathrm{D} }-\left[ {a_n^2 +k_\mathrm{fD} s f(s)} \right] \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})=0 \end{aligned}$$
(82)

The square root of the expression inside the bracket in Eq. (82) is defined by \(\eta \), as given by:

$$\begin{aligned} \eta =\sqrt{a_n^2 +k_\mathrm{fD} \mathrm{s} f(\mathrm{s})} \end{aligned}$$
(83)

Combining Eqs. (82) and (83) results in:

$$\begin{aligned} \frac{d^{2}\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{dr_\mathrm{D}^2 }+\frac{1}{r_\mathrm{D} }\frac{d\tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{dr_\mathrm{D} }-\eta ^{2} \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})=0 \end{aligned}$$
(84)

Equation (84) is a modified homogeneous Bessel differential equation that has the following general solution:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D} ,n,\mathrm{s})=A_1 I_0 (\eta r_\mathrm{D} )+A_2 K_0 (\eta r_\mathrm{D}) \end{aligned}$$
(85)

where \(A_{1}\) and \(A_{2}\) are the first and second constants of the general solution (85), and \(I_{0}\) and \(K_{0}\) are the modified Bessel functions of the first and second kinds of order 0.

By applying Eq. (64) to Eq. (85), we can conclude that \(A_{1} = 0\); therefore, Eq. (85) reduces to:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})=A_2 K_0 (\eta r_\mathrm{D}) \end{aligned}$$
(86)

By differentiation with respect to \(r_\mathrm{D}\) from Eq. (86), we obtain:

$$\begin{aligned} \frac{\partial \tilde{\bar{{p}}}_\mathrm{fD} (r_\mathrm{D},n,\mathrm{s})}{\partial r_\mathrm{D} }=-A_2 \eta K_1 (\eta r_\mathrm{D}) \end{aligned}$$
(87)

where \(K_{1}\) is the modified Bessel function of the second kind of order 1.

By combining Eqs. (76), (86) and (87), it is possible to arrive at:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,\mathrm{s})=A_2 K_0 (\eta r_\mathrm{wD} )+{S}h_\mathrm{D} A_2 \eta K_1 (\eta r_\mathrm{wD} ) \end{aligned}$$
(88)

By combining Eqs. (77), (86) and (87), we have:

$$\begin{aligned} s C_\mathrm{sD} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,\mathrm{s})+h_\mathrm{D} A_2 \eta K_1 (\eta r_\mathrm{wD} )=\frac{1}{\mathrm{s} a_n } \end{aligned}$$
(89)

From Eqs. (88) and (89), it is possible to cancel \(\tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})\), resulting in:

$$\begin{aligned} \mathrm{s} C_\mathrm{sD} A_2 \left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} A_2 \eta K_1 (\eta r_\mathrm{wD} )=\frac{1}{\mathrm{s}a_n } \end{aligned}$$
(90)

From Eq. (90), we can obtain \(A_{2}\) given by:

$$\begin{aligned} A_2 =\frac{1}{\mathrm{s} a_n \left[ {\mathrm{s} C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] } \end{aligned}$$
(91)

By combining Eqs. (88) and (91), we arrive at:

$$\begin{aligned} \tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD} ,n,\mathrm{s})=\frac{K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )}{\mathrm{s}a_n \left[ {\mathrm{s} C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+Sh_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] } \end{aligned}$$
(92)

The inverse modified finite Fourier sine transform with respect to \(n\) is defined for \(\tilde{\bar{{p}}}_\mathrm{fD,S} \) as follows:

$$\begin{aligned} \bar{{p}}_\mathrm{fD,S} (r_\mathrm{wD},z_\mathrm{D},\mathrm{s})&= \wp _n^{-1} \{\tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})\}=\frac{2}{h_\mathrm{oD} }\sum _{n=1}^{+\infty } {\tilde{\bar{{p}}}_\mathrm{fD,S} (r_\mathrm{wD},n,\mathrm{s})\sin (a_n z_\mathrm{D} ) } \nonumber \\&0<z_\mathrm{D} <h_\mathrm{oD} \end{aligned}$$
(93)

where \(\wp _n^{-1} \) is the sign for the inverse modified finite Fourier sine transform with respect to \(n\).

Equation (93) is a function of \(z _\mathrm{D}\). To obtain a dimensionless average fracture pressure in the Laplace domain along the dimensionless perforation interval of the well, Eq. (93) must be integrated with respect to \(z _\mathrm{D}\) over the limits of the dimensionless perforation interval, \(h _\mathrm{oD} \hbox {-}h _\mathrm{pD} < z _\mathrm{D } < h _\mathrm{oD}\), divided by the dimensionless perforated interval of the oil zone, \(h _\mathrm{pD}\). Gerami and Pooladi-Darvish (2009) used the same approach to present a 2D mathematical model for a constant-rate drawdown test performed in a partially penetrated well completed in the free-gas zone of a hydrate-capped gas reservoir during the early time production. Therefore, by using this approach it is possible to write:

$$\begin{aligned} \bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},\mathrm{s})=\frac{1}{h_\mathrm{pD} }\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD} ,z_\mathrm{D},\mathrm{s}) dz_\mathrm{D}} \end{aligned}$$
(94)

By substituting Eq. (93) into Eq. (94), we get:

$$\begin{aligned} \bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},\mathrm{s})=\frac{1}{h_\mathrm{pD} }\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\frac{2}{h_\mathrm{oD} }\sum _{n=1}^{+\infty } {\tilde{\bar{{p}}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},n,\mathrm{s})\sin (a_n z_\mathrm{D}) } dz_\mathrm{D} } \end{aligned}$$
(95)

Eq. (95) can be simplified as:

$$\begin{aligned} \bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},\mathrm{s})=\frac{2}{h_\mathrm{oD} h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\tilde{\bar{{p}}}_\mathrm{fD},S (r_\mathrm{wD},n,\mathrm{s})\int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\sin (a_n z_\mathrm{D})dz_\mathrm{D}}} \end{aligned}$$
(96)

The integral in Eq. (96) is calculated as:

$$\begin{aligned} \int \limits _{h_\mathrm{oD} -h_\mathrm{pD} }^{h_\mathrm{oD} } {\sin (a_n z_\mathrm{D}) dz_\mathrm{D} } =\frac{2h_\mathrm{oD} }{(2n-1)\pi }\cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D}} \right) \pi } \right] \end{aligned}$$
(97)

By replacing Eq. (97) in Eq. (96), we have:

$$\begin{aligned} \bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},\mathrm{s})=\frac{1}{h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\left[ {\frac{4}{\pi (2n-1)}\cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D} } \right) \pi } \right] } \right] \tilde{\bar{{p}}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},n,\mathrm{s}) } \nonumber \\ \end{aligned}$$
(98)

By substituting Eq. (92) into Eq. (98), it is possible to arrive at:

$$\begin{aligned}&\bar{{p}}_{\mathrm{fD},\mathrm{S}} (r_\mathrm{wD},\mathrm{s})=\nonumber \\&\quad \frac{1}{ h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\left[ {\frac{\frac{4}{\pi (2n-1)}\left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] \cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D} } \right) \pi } \right] }{\mathrm{s} a_n \left[ {s C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )}\right] }} \right] }\nonumber \\ \end{aligned}$$
(99)

Eq. (99) is only a function of “s”. Therefore, Eq. (99) can be written as below:

$$\begin{aligned}&\bar{{p}}_{\mathrm{fD},\mathrm{S}} (\mathrm{s})= \nonumber \\&\quad \frac{1}{ h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\left[ {\frac{\frac{4}{\pi (2n-1)}\left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] \cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D} } \right) \pi } \right] }{\mathrm{s} a_n \left[ {\mathrm{s} C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+{S} h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] }} \right] }\nonumber \\ \end{aligned}$$
(100)

Equation (100) shows the dimensionless average pressure at the wellbore \((r _\mathrm{D} = r _\mathrm{wD})\) in the Laplace domain. Therefore, it is possible to replace \(\bar{{p}}_{\mathrm{fD},\mathrm{S}} \) by \(\bar{{p}}_\mathrm{wD} \) in Eq. (100), resulting in:

$$\begin{aligned}&\bar{{p}}_\mathrm{wD} (\mathrm{s})= \nonumber \\&\quad \frac{1}{ h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\left[ {\frac{\frac{4}{\pi (2n-1)}\left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] \cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D} } \right) \pi } \right] }{\mathrm{s} a_n \left[ {\mathrm{s} C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] }} \right] }\nonumber \\ \end{aligned}$$
(101)

By applying a numerical Laplace inversion method (Hassanzadeh and Pooladi-Darvish 2007; Mashayekhizadeh et al. 2011) for Eq. (101), the dimensionless average pressure response of the well (\(p_\mathrm{wD})\) in the oil zone of an infinite-acting double-porosity reservoir, including wellbore storage and skin effects, can be obtained as follows:

$$\begin{aligned}&p_\mathrm{wD} (t_\mathrm{D} )= \nonumber \\&\quad \ell _\mathrm{s}^{-1} \left\{ {\frac{1}{ h_\mathrm{pD} }\sum _{n=1}^{+\infty } {\left[ {\frac{\frac{4}{\pi (2n-1)}\left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] \cos \left[ {\left( {\frac{2n-1}{2}} \right) \left( {1-h_\mathrm{D} } \right) \pi } \right] }{\mathrm{s} a_n \left[ {s C_\mathrm{sD} \left[ {K_0 (\eta r_\mathrm{wD} )+S h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] +h_\mathrm{D} \eta K_1 (\eta r_\mathrm{wD} )} \right] }} \right] } } \right\} \nonumber \\ \end{aligned}$$
(102)

where

$$\begin{aligned} p_\mathrm{wD} (t_\mathrm{D} )=\ell _\mathrm{s}^{-1} \{\bar{{p}}_\mathrm{wD} (\mathrm{s})\} \end{aligned}$$
(103)

The time derivative of the dimensionless average pressure can be applied to analyze and interpret the well test data more precisely. After replacing \(p_\mathrm{fD}\) by \(p_\mathrm{wD}\) and \(\bar{{p}}_\mathrm{fD} \) by \(\bar{{p}}_\mathrm{wD} \) in Eq. (51), we have:

$$\begin{aligned} \ell _{t_\mathrm{D} } \left\{ {\frac{\mathrm{d}p_\mathrm{wD} (t_\mathrm{D} )}{\mathrm{d}t_\mathrm{D} }} \right\} =\mathrm{s} \bar{{p}}_\mathrm{wD} (\mathrm{s}) \end{aligned}$$
(104)

Eq. (104) can be written as follows:

$$\begin{aligned} \frac{\mathrm{d}p_\mathrm{wD} (t_\mathrm{D} )}{\mathrm{d}t_\mathrm{D} }=\ell _\mathrm{s}^{-1} \{s \bar{{p}}_\mathrm{wD} (\mathrm{s})\} \end{aligned}$$
(105)

To obtain \(dp_\mathrm{wD}/\mathrm{d}t_\mathrm{D}\), we need to multiply \(\bar{{p}}_\mathrm{wD} (\mathrm{s})\) from Eq. (101) by “s” and then take the Laplace inverse. However, in well testing, \(\mathrm{d}p_\mathrm{wD}/\mathrm{d}\hbox {ln}t_\mathrm{D}\) is used as the derivative of the dimensionless average pressure response of the well. \(\mathrm{d}p_\mathrm{wD}/\mathrm{d}\hbox {ln}t_\mathrm{D}\) can be simplified as below:

$$\begin{aligned} \frac{\mathrm{d}p_\mathrm{wD} (t_\mathrm{D} )}{\mathrm{d}\ln t_\mathrm{D} }=t_\mathrm{D} \frac{\mathrm{d}p_\mathrm{wD} (t_\mathrm{D} )}{\mathrm{d}t_\mathrm{D} } \end{aligned}$$
(106)

By substituting Eq. (105) into Eq. (106), it is possible to find \(\mathrm{d}p_\mathrm{wD}/\mathrm{d}\hbox {ln}t_\mathrm{D}\) as follows:

$$\begin{aligned} \frac{\mathrm{d}p_\mathrm{wD} (t_\mathrm{D} )}{\mathrm{d}\ln t_\mathrm{D} }=t_\mathrm{D} \ell _\mathrm{s}^{-1} \{\mathrm{s} \bar{{p}}_\mathrm{wD} (\mathrm{s})\} \end{aligned}$$
(107)

In this work, the Stehfest (1970) method is applied for numerical Laplace inversion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dejam, M., Hassanzadeh, H. & Chen, Z. Semi-Analytical Solutions for a Partially Penetrated Well with Wellbore Storage and Skin Effects in a Double-Porosity System with a Gas Cap. Transp Porous Med 100, 159–192 (2013). https://doi.org/10.1007/s11242-013-0210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0210-6

Keywords

Navigation