Skip to main content
Log in

Elastic Waves in Swelling Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

An Erratum to this article was published on 05 April 2014

Abstract

Time harmonic waves in a swelling porous elastic medium of infinite extent and consisting of solid, liquid and gas phases have been studied. Employing Eringen’s theory of swelling porous media, it has been shown that there exist three dilatational and two shear waves propagating with distinct velocities. The velocities of these waves are found to be frequency dependent and complex valued, showing that the waves are attenuating in nature. Here, the appearance of an additional shear wave is new and arises due to swelling phenomena of the medium, which disappears in the absence of swelling. The reflection phenomenon of an incident dilatational wave from a stress-free plane boundary of a porous elastic half-space has been investigated for two types of boundary surfaces: (i) surface having open pores and (ii) surface having sealed pores. Using appropriate boundary conditions for these boundary surfaces, the equations giving the reflection coefficients corresponding to various reflected waves are presented. Numerical computations are performed for a specific model consisting of sandstone, water and carbon dioxide as solid, liquid and gas phases, respectively, of the porous medium. The variations of phase speeds and their corresponding attenuation coefficients are depicted against frequency parameter for all the existing waves. The variations of reflection coefficients and corresponding energy ratios against the angle of incidence are also computed and depicted graphically. It has been shown that in a limiting case, Eringen’s theory of swelling porous media reduces to Tuncay and Corapcioglu theory of porous media containing two immiscible fluids. The various numerical results under these two theories have been compared graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achenbach, J.D.: Wave Propagation in Elastic Solids, 1st edn. North Holland, Amsterdam (1973)

    Google Scholar 

  • Ainslie, M.A., Burns, P.W.: Energy-conserving reflection and transmission coefficients for a solid–solid boundary. J. Acoust. Soc. Am. 98, 2836–2840 (1995)

    Google Scholar 

  • Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17, 153–207 (1976a)

    Article  Google Scholar 

  • Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–245 (1976b)

    Article  Google Scholar 

  • Auriault, J.L.: Dynamic behaviour of a porous medium saturated by a Newtonian fluid. Int. J. Eng. Sci. 18, 775–785 (1980)

    Article  Google Scholar 

  • Auriault, J.L., Borne, L., Chambon, R.: Dynamics of porous saturated media: checking of generalised law of Darcy. J. Acoust. Soc. Am. 77, 1641–1650 (1985)

    Article  Google Scholar 

  • Bear, J., Corapcioglu, M.Y.: Wave propagation in porous media. A review. In: Transport Processes in Porous Media, pp. 373–469. Kluwer Academic Publishers, Dordrecht (1991)

  • Bedford, A., Drumheller, D.S.: Theory of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  Google Scholar 

  • Berryman, J.G.: Confirmation of Biot’s theory. Appl. Phys. Lett. 37, 382–384 (1980)

    Article  Google Scholar 

  • Berryman, J.G.: Elastic waves propagation in fluid-saturared porous media. J. Acoust. Soc. Am. 69, 416–424 (1981)

    Article  Google Scholar 

  • Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956a)

    Article  Google Scholar 

  • Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956b)

    Article  Google Scholar 

  • Boffil, F., Quintanilla, R.: Anti-plane shear deformations of swelling porous elastic soils. Int. J. Eng. Sci. 41, 801–816 (2003)

    Article  Google Scholar 

  • Borcherdt, R.D.: Energy and plane waves in linear viscoelastic media. J. Geophys. Res. 78, 2442–2453 (1973)

    Article  Google Scholar 

  • Borcherdt, R.D.: Reflection–refraction of general P- and type-I S-waves in elastic and anelastic solids. Geophys. J. R. Astron. Soc. 70, 621–638 (1982)

    Article  Google Scholar 

  • Borcherdt, R.D.: Viscoelastic Waves in Layered Media. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  • Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III. Academic Press, New York (1976)

  • Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  Google Scholar 

  • Brutsaert, W.: The propagation of elastic waves in unconsolidated unsaturated granular medium. J. Geophys. Res. 69, 243–257 (1964)

    Article  Google Scholar 

  • Burridge, R., Keller, J.B.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 1140–1146 (1981)

    Article  Google Scholar 

  • Carcione, J.M.: Wave Fields in Real Media—Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Carcione, J.M., Santos, J.E., Ravazzoli, C.L., Helle, H.B.: Wave simulation in partially frozen porous media with fractal freezing conditions. J. Appl. Phys. 94, 7839–7847 (2003)

    Article  Google Scholar 

  • Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Proc. R. Soc. Lond. A 462, 3493–3499 (2006)

    Article  Google Scholar 

  • Corapcioglu, M.Y., Tuncay, K.: Propagation of waves in porous media. In: Advances in Porous Media, vol. III, pp. 361–440. Elsevier Science, Amsterdam (1996)

  • Cox, D.A.: Galois Theory, Chap. 1. Wieley, Hoboken (2004)

  • de la Cruz, V., Hube, J., Spanos, T.J.T.: Reflection and transmission of seismic waves at the boundaries of porous media. Wave Motion 16(4), 323–338 (1992)

    Article  Google Scholar 

  • de la Cruz, V., Spanos, T.J.T.: Seismic wave propagation in a porous medium. Geophysics 50, 1556–1565 (1985)

    Article  Google Scholar 

  • Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid-filled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull. Seism. Soc. Am. 50(4):599–607 (1960)

    Google Scholar 

  • Deresiewicz, H., Rice, J.T.: The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull. Seism. Soc. Am. 52(3):595–625 (1962)

    Google Scholar 

  • Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seism. Soc. Am. 53(4), 783–788 (1963)

    Google Scholar 

  • Dutta, N.C., Ode, H.: Seismic reflections from a gas–water contact. Geophysics 48, 148–162 (1983)

    Article  Google Scholar 

  • Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32, 1337–1349 (1994) [Corrigendum, ibid, 42, 949–949 (2004)]

    Google Scholar 

  • Gales, C.: On the special behaviour in the theory of swelling porous elastic soils. Int. J. Solid. Struct. 39, 4151–4165 (2002a)

    Article  Google Scholar 

  • Gales, C.: Some uniqueness and continuous dependence results in the theory of swelling porous elastic soils. Int. J. Eng. Sci. 40, 1211–1231 (2002b)

    Article  Google Scholar 

  • Gales, C.: On the asymptotic partition of energy in the theory of swelling porous elastic soils. Arch. Mech. 55, 91–107 (2003)

    Google Scholar 

  • Gales, C.: Waves and vibrations in the theory of swelling porous elastic soils. Eur. J. Mech. A 23, 345–357 (2004)

    Article  Google Scholar 

  • Garg, S.K.: Wave propagation effects in a fluid-saturated porous solid. J. Geophys. Res. 76, 7947–7962 (1971)

    Article  Google Scholar 

  • Garg, S.K., Nayfeh, A.H.: Compressional wave propagation in liquid and/or gas saturated elastic porous media. J. Appl. Phys. 60, 3045–3055 (1986)

    Article  Google Scholar 

  • Geertsma, J., Smit, D.C.: Some aspects of elastic wave propagation in fluid saturated porous solids. Geophysics 26, 169–181 (1961)

    Article  Google Scholar 

  • Hassanzadeh, S.: Acoustic modeling in fluid-saturated porous media. Geophysics 56, 424–435 (1991)

    Article  Google Scholar 

  • Jones, J.: Pulse propagation in a poroelastic solid. J. Appl. Mech. 36, 878–880 (1969)

    Article  Google Scholar 

  • Krebes, E.S.: Discrepancies in energy calculations for inhomogeneous waves. Geophys. J. R. Astron. Soc. 75, 839–846 (1983)

    Article  Google Scholar 

  • Leclaire, P., Cohen-Tenoudji, F., Puente, J.A.: Extension of Biot’s theory of wave propagation to frozen porous media. J. Acoust. Soc. Am. 96, 3753–3768 (1994)

    Article  Google Scholar 

  • Lin, C.-H., Lee, V.W., Trifunac, M.D.: The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid. Soil. Dyn. Earthq. Eng. 25, 205–223 (2005)

    Article  Google Scholar 

  • Liu, Q.R., Katsube, N.: The discovery of a second kind of rotational wave in a fluid-filled porous material. J. Acoust. Soc. Am. 88(2), 1045–1053 (1990)

    Article  Google Scholar 

  • Morland, L.W.: A simple constitutive theory for a fluid saturated porous solid. J. Geophys. Res. 77, 890–900 (1972)

    Article  Google Scholar 

  • Morse, P.M., Feshback, H.: Methods of Theoretical Physics. McGraw-Hill Book, New York (1953)

    Google Scholar 

  • Plona, T.J.: Observation of second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259–261 (1980)

    Article  Google Scholar 

  • Pride, S.R., Gangi, A.F., Morgan, F.D.: Deriving equations of motion for isotropic media. J. Acoust. Soc. Am. 92, 3278–3290 (1992)

    Article  Google Scholar 

  • Quintanilla, R.: On the linear problem of swelling porous elastic soils. J. Math. Anal. Appl. 269, 50–72 (2002a)

    Article  Google Scholar 

  • Quintanilla, R.: On the linear problem of swelling porous elastic soils with incompressible fluid. Int. J. Eng. Sci. 40, 1485–1494 (2002b)

    Article  Google Scholar 

  • Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences. World Scientific, River Edge (1995)

  • Rubino, J.G., Ravazzoli, C.L., Santos, J.E.: Reflection and transmission of waves in composite porous media: a quantification of energy conservations involving slow waves. J. Acoust. Soc. Am. 120, 2425–2436 (2006)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Douglas, J.J.: Static and dynamic behaviour of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1428–1438 (1990a)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Douglas, J.J., Lovera, O.M.: A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1439–1448 (1990b)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Ravazzoli, C.L., Hensley, J.L.: Reflection and transmission coefficients in fluid-saturated porous media. J. Acoust. Soc. Am. 91, 1911–1923 (1992)

    Article  Google Scholar 

  • Santos, J.E., Ravazzoli, C.L., Carcione, J.M.: A model for wave propagation in a composite solid matrix saturated by a single-phase fluid. J. Acoust. Soc. Am. 115, 2749–2760 (2004)

    Article  Google Scholar 

  • Sharma, M.D.: Wave propagation in a dissipative poroelastic medium. IMA J. Appl. Math. 29, 1–11 (2011)

    Google Scholar 

  • Sharma, M.D., Kumar, M.: Reflection of attenuated waves at the surface of a porous solid saturated with two immiscible viscous fluids. Geophys. J. Int. 184, 371–384 (2011)

    Article  Google Scholar 

  • Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    Google Scholar 

  • Tomar, S.K., Arora, A.: Reflection and transmission of elastic waves at an elastic/porous solid saturated by two immiscible fluids. Int. J. Solid. Struc. 43(7–8), 1991–2013 (2006) [Erratum, ibid, 44(17), 5796–5800 (2007)]

    Google Scholar 

  • Tuncay, K., Corapcioglu, M.Y.: Wave propagation in poroelastic media saturated by two fluids. J. Appl. Mech. 64, 313–320 (1997)

    Article  Google Scholar 

  • Wei, C., Muraleetharan, K.K.: A continuum theory of porous media saturated by multiphase immiscible fluids-I. Linear poroelasticity. Int. J. Eng. Sci. 40, 1807–1833 (2002)

    Article  Google Scholar 

  • Yeh, C.-L., Lo, W.-C., Jan, C.-D., Yang, C.-C.: Reflection and refraction of obliquely incident elastic waves upon the interface between two porous elastic half-spaces saturated by different fluid mixtures. J. Hydrol. 395(1–2), 91–102 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors SG acknowledges the financial support provided by Council of Scientific and Industrial Research, New Delhi, INDIA, in the form of JRF through the Grant No. 09/135(0623)/2010-EMR-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tomar.

Appendices

Appendix 1

The explicit expressions of the elements of matrices \(P\) and \(Q\) are given as

$$\begin{aligned} p_{1i}&= L_ik_{\alpha i}^2-2{\bar{a}}_{11}k^2,\quad p_{1J}=2{\bar{a}}_{11}kd_{\beta j},\quad p_{2i}=M_ik_{\alpha i}^2-2f_i{\bar{a}}_{22}k^2,\\ p_{2J}&= 2{\bar{f}}_j{\bar{a}}_{22}kd_{\beta j},\quad p_{3i}=N_ik_{\alpha i}^2,\quad p_{3J}=0,\quad p_{4i}=2kd_{\alpha i},\\ p_{4J}&= 2k^2-k_{\beta j}^2,\quad p_{5i}=f_ip_{4i},\quad p_{5J}={\bar{f}}_{j}p_{4J},\quad q_i=-p_{i1},\quad q_J=p_{J1},\\ L_i&= a_{11}+f_ia_{12}+g_ia_{13},\quad M_i=a_{12}+f_ia_{22}+g_ia_{23},\quad N_i=a_{13}+f_ia_{23}+g_ia_{33}, \end{aligned}$$

where \(i=1,2,3;\quad j=1,2;\quad J = j+3.\)

Appendix 2

The explicit expressions of the elements of matrices \(P^{\prime }\) and \(Q^{\prime }\) are given as

$$\begin{aligned} p_{1i}^{\prime }&= (L_i+M_i+N_i)k_{\alpha i}^2-2({\bar{a}}_{11}+f_{i}{\bar{a}}_{22})k^2,\quad p^{\prime }_{1J}=2({\bar{a}}_{11}+{\bar{f}}_j{\bar{a}}_{22})kd_{\beta j},\\ p_{2i}^{\prime }&= 2({\bar{a}}_{11}+f_i{\bar{a}}_{22})kd_{\alpha i},\quad p^{\prime }_{2J}=({\bar{a}}_{11}+{\bar{f}}_j{\bar{a}}_{22})(2k^2-k_{\beta j}^2),\quad p^{\prime }_{3i}=(1-f_i)k,\\ p_{3J}^{\prime }&= -(1-{\bar{f}}_j)d_{\beta j},\quad p^{\prime }_{4i}=(1-f_i)d_{\alpha i},\quad p^{\prime }_{4J}=(1-{\bar{f}}_j)k,\quad p^{\prime }_{5i}=(1-g_i)d_{\alpha i},\\ p_{5J}^{\prime }&= (1-{\bar{g}}_j)k,\quad q^{\prime }_1=-p^{\prime }_{11},\quad q^{\prime }_2=p^{\prime }_{21},\quad q^{\prime }_3=-p^{\prime }_{31},\quad q^{\prime }_J=p^{\prime }_{J1},\\ L_i&= a_{11}+f_ia_{12}+g_ia_{13},\quad M_i=a_{12}+f_ia_{22}+g_ia_{23},\quad N_i=a_{13}+f_ia_{23}+g_ia_{33}, \end{aligned}$$

where \(i=1,2,3;\quad j=1,2;\quad J = j+3.\)

Appendix 3

The explicit expressions of the elements of the matrix \(F\) are given by

$$\begin{aligned} F_{0i}&= -D_1\big [\big (L_1+f_i^*M_1+g_i^*N_1 \big )k_{\alpha 1}^2d_{\alpha i}^*-2k\big ({\bar{a}}_{11}+f_1f_i^*{\bar{a}}_{22}\big ) \big (kd_{\alpha i}^*+k^*d_{\alpha 1}\big )\big ],\\ F_{0J}&= -D_1\big [\big (L_1+{\bar{f}}_j^*M_1+{\bar{g}}_j^*N_1 \big )k_{\alpha 1}^2k^*-2k\big ({\bar{a}}_{11}+f_1{\bar{f}}_j^*{\bar{a}}_{22}\big )\big (kk^*-d_{\beta j}^*d_{\alpha 1}\big )\big ],\\ F_{i0}&= D_1\big [\big (L_i+f_1^*M_i+g_1^*N_i \big )k_{\alpha i}^2k^*-2k\big ({\bar{a}}_{11}+f_if_1^*{\bar{a}}_{22}\big )\big (kd_{\alpha 1}^*+k^*d_{\alpha i}\big )\big ],\\ F_{ij}&= -D_1\big [\big (L_i+f_j^*M_i+g_j^*N_i \big )k_{\alpha i}^2d_{\alpha j}^*-2k\big ({\bar{a}}_{11}+f_if_j^*{\bar{a}}_{22}\big )\big (kd_{\alpha j}^*-k^*d_{\alpha i}\big )\big ],\\ F_{i3}&= -D_1\big [\big (L_i+f_3^*M_i+g_3^*N_i \big )k_{\alpha i}^2d_{\alpha 3}^*-2k\big ({\bar{a}}_{11}+f_if_3^*{\bar{a}}_{22}\big ) \big (kd_{\alpha 3}^*-k^*d_{\alpha i}\big )\big ],\\ F_{iJ}&= -D_1\big [\big (L_i+{\bar{f}}_j^*M_i+{\bar{g}}_j^*N_i \big )k_{\alpha i}^2k^*-2k\big ({\bar{a}}_{11}+f_i{\bar{f}}_j^*{\bar{a}}_{22}\big ) \big (kk^*+d_{\beta j}^*d_{\alpha i}\big )\big ],\\ F_{J0}&= D_1\big ({\bar{a}}_{11}+{\bar{f}}_jf^*_1{\bar{a}}_{22}\big ) \big [k_{\beta j}^2k^*-2k\big (kk^*-d_{\alpha 1}^*d_{\beta j}\big )\big ],\\ F_{Ji}&= D_1\big ({\bar{a}}_{11}+{\bar{f}}_jf^*_i{\bar{a}}_{22}\big ) \big [k_{\beta j}^2k^*-2k\big (kk^*+d_{\alpha i}^*d_{\beta j}\big )\big ],\\ F_{4J}&= -D_1\big ({\bar{a}}_{11}+{\bar{f}}_1{\bar{f}}^*_j{\bar{a}}_{22}\big ) \big [k_{\beta 1}^2d_{\beta j}^*-2k\big (kd_{\beta j}^*-k^*d_{\beta 1}\big )\big ],\\ F_{5J}&= -D_1 \big ({\bar{a}}_{11}+{\bar{f}}_2{\bar{f}}^*_j{\bar{a}}_{22}\big ) \big [k_{\beta 2}^2d_{\beta j}^*-2k\big (kd_{\beta j}^*-k^*d_{\beta 2}\big ) \big ],\\ F_{00}&= -F_{11},\quad D_1=\omega |A^2_0|,\\ L_i&= a_{11}+f_ia_{12}+g_ia_{13},\quad M_i=a_{12}+f_ia_{22}+g_ia_{23},\quad N_i=a_{13}+f_ia_{23}+g_ia_{33}, \end{aligned}$$

where \(i=1,2,3;\quad j=1,2;\quad J = j+3.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomar, S.K., Goyal, S. Elastic Waves in Swelling Porous Media. Transp Porous Med 100, 39–68 (2013). https://doi.org/10.1007/s11242-013-0204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0204-4

Keywords

Navigation