Skip to main content
Log in

Onset of Convection with Internal Heating in a Porous Medium Saturated by a Nanofluid

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Linear stability analysis was applied to the onset of convection due to internal heating in a porous medium saturated by a nanofluid. A model in which the effects of thermophoresis and Brownian motion are taken into account is employed. We utilized more realistic boundary conditions than in the previous work on this subject; now the nanofluid particle fraction is allowed to adapt to the temperature profile induced by the internal heating, subject to the requirement that there is zero perturbation flux across a boundary. The results show that the presence of the nanofluid particles leads to increased instability of the system. We identified two combinations of dimensionless parameters that are the major controllers of convection instability in the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a\) :

Horizontal overall wavenumber

\(D\) :

d/dz

\(D_\mathrm{{B}}\) :

Brownian diffusion coefficient

\(D_\mathrm{{T}}\) :

Thermophoresis diffusion coefficient

\(F(z)\) :

Negative basic temperature gradient

g :

Gravitational acceleration

\(G(z)\) :

\(F(z)\)/Ra

\(k_\mathrm{{m}}\) :

Effective thermal conductivity

\(K\) :

Permeability

\(H\) :

Layer width

Le:

Lewis number, \(\frac{\alpha _\mathrm{{m}}}{D_\mathrm{{B}}}\)

\(N_\mathrm{{A}}\) :

Modified diffusivity ratio, \(\frac{D_\mathrm{{T}} }{D_\mathrm{{B}} T_0 \phi _0 }\frac{\rho _0 g\beta KH}{\mu \alpha _\mathrm{{m}} }\)

\(N_\mathrm{{B}}\) :

Modified particle-density scaling parameter, \(\frac{\varepsilon (\rho c)_\mathrm{{p}} }{(\rho c)_\mathrm{{f}} }\phi _0 \)

\({N_\mathrm{{B}}}^*\) :

\(\text{ Ra }N_\mathrm{{B}}\)

\(p\) :

Dimensionless pressure, \(p^*K/\mu \alpha _\mathrm{{m}} \)

\(p^*\) :

Pressure

\(Q\) :

Volumetric heat source strength

Ra:

Internal Rayleigh number, \(\frac{\rho _0 g\beta KH^{3}Q}{2\mu k\alpha _\mathrm{{m}}}\)

Rm:

Basic-density Rayleigh number, \(\frac{\rho _0 gKH}{\mu \alpha _\mathrm{{m}}}\)

Rn:

Concentration Rayleigh number, \(\frac{(\rho _\mathrm{{p}} -\rho )\phi _0 gKH}{\mu \alpha _\mathrm{{m}}}\)

\(t\) :

Dimensionless time, \(t^*\alpha _\mathrm{{m}} /\sigma H^{2}\)

\(t^*\) :

Time

\(T^*\) :

Temperature

\(T_{0}\) :

Temperature at the upper and lower boundary

\(u\) :

Dimensionless \(x\)-velocity component, \(u^{*}H/\alpha _\mathrm{{m}} \)

\(v\) :

Dimensionless \(y\)-velocity component, \(v^*H/\alpha _\mathrm{{m}} \)

\(\mathbf{v}^*_\mathrm{{D}} \) :

Vector of Darcy velocity, \((u^*,v^*,w^*)\)

\(w\) :

Dimensionless \(z\)-velocity component, \(w^*H/\alpha _\mathrm{{m}} \)

\(x\) :

\(x^*/H\)

\(x^*\) :

Coordinate in the horizontal plane

\(y\) :

\(y^*/H\)

\(y^*\) :

Coordinate in the horizontal plane

\(z\) :

\(z^*/H\)

\(z^*\) :

Upward vertical coordinate

\(\alpha _\mathrm{{m}}\) :

Effective thermal diffusivity, \(\frac{k_\mathrm{{m}} }{(\rho c_\mathrm{{P}} )_\mathrm{{f}}}\)

\(\beta \) :

Fluid volumetric expansion coefficient

\(\varepsilon \) :

Porosity

\(\theta \) :

Dimensionless temperature, \(\frac{\rho _0 g\beta KH}{\mu \alpha _\mathrm{{m}} }(T^*-T_0 )\)

\(\mu \) :

Fluid viscosity

\(\rho \) :

Density

\(\rho c\) :

Heat capacity

\(\rho _{0}\) :

Fluid density at temperature \(T_{0}\)

\(\sigma \) :

Heat capacity ratio, \(\frac{(\rho c)_m }{(\rho c)_f }\)

\(\phi \) :

Rescaled nanofluid particle fraction, \(\frac{\phi ^*-\phi _0}{\phi _0}\)

\(\phi ^*\) :

Nanofluid particle fraction

\(\phi _{0}\) :

Nanofluid particle fraction at the upper and lower boundary

0:

Reference quantity

\(\mathrm{{c}}\) :

Critical value

\(\mathrm{{f}}\) :

Fluid

\(\mathrm{{m}}\) :

Porous medium

\(\mathrm{{p}}\) :

Particles

\(^{\prime }\) :

Perturbation variable

\(*\) :

Dimensional variable

References

  • Buongiorno, J.: Convective heat transfer in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Buretta, R., Berman, A.: Convective heat-transfer in a liquid saturated porous layer. J. Appl. Mech. Trans. ASME 43, 249–253 (1976)

    Article  Google Scholar 

  • Gasser, R., Kazimi, M.: Onset of convection in a porous-medium with internal heat generation. J. Heat Transf. Trans. ASME 98, 49–54 (1976)

    Article  Google Scholar 

  • Hardee, H., Nilson, R.: Natural-convection in porous-media with heat-generation. Nucl. Sci. Eng. 63, 119–132 (1977)

    Google Scholar 

  • Kulacki, F., Freeman, R.: Note on thermal-convection in a saturated, heat-generating porous layer. J. Heat Transf. Trans. ASME 101, 169–171 (1979)

    Article  Google Scholar 

  • Kulacki, F., Ramchandani, R.: Hydrodynamic instability in a porous layer saturated with a heat generating fluid. Warme und Stoffubertragung Thermo Fluid Dyn. 8, 179–185 (1975)

    Article  Google Scholar 

  • Nield, D.A.: General heterogeneity effects on the onset of convection in porous medium. In: Vadasz, P. (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, pp. 63–84. Springer, New York (2008)

    Chapter  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium. Int. J. Heat Mass Transf. 50, 1909–1915 (2007)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Rhee, S., Dhir, V., Catton, I.: Natural-convection heat-transfer in beds of inductively heated particles. J. Heat Transf. Trans. ASME 100, 78–85 (1978)

    Article  Google Scholar 

  • Royer, J., Flores, L.: Two-dimensional natural-convection in an anisotropic and heterogeneous porous-medium with internal heat-generation. Int. J. Heat Mass Transf. 37, 1387–1399 (1994)

    Article  Google Scholar 

  • Rudraiah, N., Veerappa, B., Balachandra Rao, S.: Convection in a fluid-saturated porous layer with nonuniform temperature-gradient. Int. J. Heat Mass Transf. 25, 1147–1156 (1982)

  • Tveitereid, M.: Thermal-convection in a horizontal porous layer with internal heat sources. Int. J. Heat Mass Transf. 20, 1045–1050 (1977)

    Article  Google Scholar 

  • Yadav, D., Bhargava, R., Agrawal, G.S.: Boundary and internal source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 60, 244–254 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nield, D.A., Kuznetsov, A.V. Onset of Convection with Internal Heating in a Porous Medium Saturated by a Nanofluid. Transp Porous Med 99, 73–83 (2013). https://doi.org/10.1007/s11242-013-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0174-6

Keywords

Navigation