Skip to main content
Log in

Pore-Scale Numerical Experiment on the Effect of the Pertinent Parameters on Heat Flux Splitting at the Boundary of a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pore-scale heat and fluid flow simulation through reconstructed porous media is presented with the aim of investigating the physics of heat flux splitting at the boundary of porous media. As such, the effects of the solid to fluid thermal conductivity ratio, porosity, pore-scale Reynolds number, Prandtl number and heat conduction within the solid matrix are investigated. The results of the present study for heat transfer coefficient and pressure drop are compared with available experimental data and good agreement was observed. The validated results are then used to investigate the validity of the existing volume-averaged models. It was observed that while results based on the volume-averaged models are reasonably close to current predictions for \(\varepsilon \le 0.7\), the discrepancy between the two becomes notable for higher porosities. While existing models rely exclusively on porosity and thermal conductivity ratio, our newly proposed correlations show the effects of Reynolds number on the heat split mechanism for high porosities. On the other hand, the Prandtl number, at least for the range of parameters studies here, is found to be less influential on the boundary heat split mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(k_{\mathrm{f}}\) :

Fluid phase thermal conductivity (\(\text{ W }\,\text{ m }^{-1}\,\text{ K }^{-1}\))

\(k_{\mathrm{s}}\) :

Solid phase thermal conductivity (\(\text{ W }\,\text{ m }^{-1}\,\text{ K }^{-1}\))

\(Pr\) :

Prandtl number, \(\nu /\alpha \)

\(q_{\mathrm{f}}\) :

Heat flux received by the fluid phase (\(\text{ W }\,\text{ m }^{-2}\))

\(q_{\mathrm{s}}\) :

Heat flux received by the solid phase (\(\text{ W }\,\text{ m }^{-2}\))

\(q_{{\mathrm{wo}}}\) :

Wall prescribed heat flux (\(\text{ W }\,\text{ m }^{-2}\))

\(Re_{D_{\mathrm{h}}}\) :

Reynolds number based on the channel hydraulic diameter, \({\rho uD_{\mathrm{h}}}/\mu \)

\(Re_{\mathrm{p}}\) :

Reynolds number based on the pore diameter, \({\rho ud_{\mathrm{p}} }/\mu \)

\(T_{{\mathrm{f,in}}}\) :

Fluid temperature at the channel inlet (K)

\(u_{{\mathrm{in}}}\) :

Fluid velocity at the channel inlet (\(\text{ m }\,\text{ s }^{-1}\))

\(\varepsilon \) :

Porosity

\(\varepsilon _{\mathrm{w}}\) :

Wall porosity

\(\rho \) :

Fluid density (\(\text{ kg }\,\text{ m }^{-3}\))

\(\lambda \) :

Solid to fluid thermal conductivity ratio, \({k_{\mathrm{s}}}/{k_{\mathrm{f}}}\)

References

  • Alazmi, B., Vafai, K.: Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 45(15), 3071–3087 (2002)

    Article  Google Scholar 

  • Amiri, A., Vafai, K., Kuzay, T.M.: Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons. Numer. Heat Transf. Part A 27(6), 651–664 (1995)

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  Google Scholar 

  • Chen, S.Y., Martinez, D., Mei, R.W.: On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8(9), 2527–2536 (1996)

    Article  Google Scholar 

  • D’Orazio, A., Succi, S.: Boundary conditions for thermal lattice Boltzmann simulations. In: Proceedings of Computational Science—ICCS 2003, Part I, vol. 2657, pp. 977–986 (2003)

  • Hooman, K., Merrikh, A.: Theoretical analysis of natural convection in an enclosure filled with disconnected conducting square solid blocks. Transp. Porous Med. 85(2), 641–651 (2010)

    Article  Google Scholar 

  • Hwang, G.J., Chao, C.H.: Heat transfer measurement and analysis for sintered porous channels. J. Heat Transf.-Trans. ASME 116(2), 456–464 (1994)

    Article  Google Scholar 

  • Imani, G.R., Maerefat, M., Hooman, K.: Estimation of heat flux bifurcation at the heated boundary of a porous medium using a pore-scale numerical simulation. Int. J. Therm. Sci. 54, 109–118 (2012a)

    Article  Google Scholar 

  • Imani, G.R., Maerefat, M., Hooman, K.: Lattice Boltzmann simulation of conjugate heat transfer from multiple heated obstacles mounted in a walled parallel plate channel. Numer. Heat Transf. Part A 62, 798–821 (2012b)

  • Jiang, P.-X., Lu, X.-C.: Numerical simulation and theoretical analysis of thermal boundary characteristics of convection heat transfer in porous media. Int. J. Heat Fluid Flow 28(5), 1144–1156 (2007)

    Article  Google Scholar 

  • Jiang, P.X., Ren, Z.P.: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 22(1), 102–110 (2001)

    Article  Google Scholar 

  • Jiang, P.-X., Xu, R.-N.: Heat transfer and pressure drop characteristics of mini-fin structures. Int. J. Heat Fluid Flow 28(5), 1167–1177 (2007)

    Article  Google Scholar 

  • Jiang, P.X., Wang, Z., Ren, Z.P., Wang, B.X.: Experimental research of fluid flow and convection heat transfer in plate channels filled with glass or metallic particles. Exp. Therm. Fluid Sci. 20(1), 45–54 (1999)

    Article  Google Scholar 

  • Jiang, P.X., Li, M., Ma, Y.C., Ren, Z.P.: Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels. Int. J. Heat Mass Transf. 47(10–11), 2073–2083 (2004a)

    Article  Google Scholar 

  • Jiang, P.X., Si, G.S., Li, M., Ren, Z.P.: Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media. Exp. Therm. Fluid Sci. 28(6), 545–555 (2004b)

    Article  Google Scholar 

  • Kim, S.J., Kim, D.: Thermal interaction at the interface between a porous medium and an impermeable wall. J. Heat Transf.-Trans. ASME 123(3), 527–533 (2001)

    Article  Google Scholar 

  • Kuwahara, F., Nakayama, A., Yamane, T.: Large eddy simulation of turbulent flow in porous media. Int. Commun. Heat Mass Transf. 33, 411–418 (2006)

    Article  Google Scholar 

  • Kuznetsov, A.V.: Thermal nonequilibrium, non-Darcian forced convection in a channel filled with a fluid saturated porous medium—a perturbation solution. Appl. Sci. Res. 57(2), 119–131 (1997)

    Article  Google Scholar 

  • Malico, I., Ferreiera de Sousa, P.J.S.A.: Modeling the pore level fluid flow in porous media using the immerse boundary method. Adv. Struct. Mater. 27, 229–251 (2012)

    Article  Google Scholar 

  • Martin, A.R., Saltiel, C., Shyy, W.: Heat transfer enhancement with porous inserts in recirculating flows. J. Heat Transf.-Trans. ASME 120(2), 458–467 (1998)

    Article  Google Scholar 

  • Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and Interfaces. Transp. Porous Med. 95(3), 581–584 (2012)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat. Mass Transf. 42(17), 3245–3252 (1999)

    Article  Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systems-1. Theory Exp. Chem. Eng. Sci. 40(5), 843–855 (1985a)

    Article  Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systems. II. Experimental method and results for three phase systems. Chem. Eng. Sci. 40(5), 857–863 (1985b)

    Article  Google Scholar 

  • Ouyang, X.L., Jiang, P.X., Xu, R.N.: Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 60, 31–40 (2013)

    Article  Google Scholar 

  • Ozahi, E., Gundogdu, M.Y., Carpinlioglu, M.O.: A modification on Ergun’s correlation for use in cylindrical packed beds with non-spherical particles. Adv. Powder Technol. 19(4), 369–381 (2008)

    Article  Google Scholar 

  • Peng, Y., Shu, C., Chew, Y.T.: Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys. Rev. E 68(2), 026701 (2003)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: Analysis of temperature gradient bifurcation in porous media—an exact solution. Int. J. Heat Mass Transf. 53(19–20), 4316–4325 (2010)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: A note on local thermal non-equilibrium in porous media and heat flux bifurcation phenomenon in porous media. Transp. Porous Med. 96(1), 169–172 (2013)

    Article  Google Scholar 

  • Zou, Q.S., He, X.Y.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Hooman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imani, G., Maerefat, M. & Hooman, K. Pore-Scale Numerical Experiment on the Effect of the Pertinent Parameters on Heat Flux Splitting at the Boundary of a Porous Medium. Transp Porous Med 98, 631–649 (2013). https://doi.org/10.1007/s11242-013-0164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0164-8

Keywords

Navigation