Transport in Porous Media

, Volume 98, Issue 2, pp 287–321 | Cite as

Coupled Electrokinetic–Hydromechanic Model for \(\text{ CO}_{2}\) Sequestration in Porous Media

  • M. TalebianEmail author
  • R. Al-Khoury
  • L. J. Sluys


In this paper, a computational model for the simulation of coupled electrokinetic and hydromechanical flow in a multiphase domain is introduced. Particular emphasis is placed on modeling \(\text{ CO}_{2}\) flow in a deformed, unsaturated geologic formation and its associated streaming potential. The governing field equations are derived based on the averaging theory and solved numerically based on a mixed discretization scheme. The standard Galerkin finite element method is utilized to discretize the deformation and the diffusive dominant field equations, and the extended finite element method, together with the level-set method, is utilized to discretize the advective dominant field equations. The level-set method is employed to trace the \(\text{ CO}_{2}\) plume front, and the extended finite element method is employed to model the high gradient in the saturation field front. This mixed discretization scheme leads to a highly convergent system, giving a stable and effectively mesh-independent model; furthermore, it minimizes the number of degrees of freedom, making the numerical scheme computationally efficient. The capability of the proposed model is evaluated by verification and numerical examples. Effects of the formation stiffness on the \(\text{ CO}_{2}\) flow and the salinity content on the streaming potential are discussed.


Multiphase flow \(\text{ CO}_{2}\) sequestration Streaming potential  XFEM Level-set 

List of symbols


\(a_J \)

XFEM extra degree of freedom


Electrokinetic coupling coefficient, \(\text{ V} \text{ Pa}^{-1}\)

\(\mathbf{C}_\mathrm{f} \)

Salt concentration, mole \(\text{ m}^{-3}\)

\(\mathbf{C}_\mathrm{r} \)

Relative coupling coefficient

\(\mathbf{D}_\mathrm{e} \)

Stiffness matrix of the solid


Young’s modulus of elasticity, Pa


Gravitational acceleration, \(\text{ m} \text{ s}^{-2}\)


Gravity acceleration vector, \(\text{ m} \text{ s}^{-2}\)

\(h_\mathrm{e} \)

Characteristic length of the element, m


Identity tensor


Total electric current density, \(\text{ A} \text{ m}^{-2}\)


Intrinsic permeability tensor, \(\text{ m}^{2}\)

\(k_\mathrm{e} \)

Electro-osmotic permeability, \(\text{ m}^{2}\text{ s}^{-1}\text{ V}^{-1}\)

\(k_{\mathrm{r}\pi }\)

Relative permeability of \(\pi \) phase

\(K_\pi \)

Bulk modulus of the phase \(\pi , \text{ Pa}^{-1}\)

\(K_s \)

Bulk modulus of the grain material, \(\text{ Pa}^{-1}\)


Cross coupling coefficients, \(\text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}\)


Displacement-strain operator


A vector equal to \(\left\langle \begin{array}{llllll} 1&1&1&0&0&0 \end{array} \right\rangle ^{T}\)


Cementation exponent


Archie’s saturation exponent. Otherwise defined in the text.

\(n_\mathrm{e} \)

Number of nodes in the element

\(P_\mathrm{c} \)

Capillary pressure, Pa

\(P_\pi \)

\(\pi \) Phase pressure, Pa

\(P_\mathrm{b} \)

Entry pressure, Pa

\(Q_\pi \)

Imposed mass flux of phase \(\pi \) normal to the boundary, \(\text{ kg} \text{ m}^{-2}\text{ s}\)

\(S_\pi \)

\(\pi \) phase saturation

\(S_{\mathrm{r}\pi }\)

Residual saturation of phase \(\pi \)

\(S_\mathrm{e} \)

Effective saturation

\({\breve{\mathbf{t}}}_\pi \)

Intra-phase stress tensor, \(\text{ N} \text{ m}^{-2}\)


Displacement vector of solid phase, m

\(\mathbf{v}_\Gamma \)

Interface velocity, \(\text{ m} \text{ s}^{-1}\)

\(\mathbf{v}_\pi \)

Mass averaged velocity of phase \({\uppi }, \text{ m} \text{ s}^{-1}\)


Electrical potential, V


\(\alpha \)

Biot’s constant

\({\varvec{\varepsilon }}\)

Total strain of the solid

\({\varvec{\varepsilon }}_0\)

Initial strain

\(\varepsilon _w \)

Brine permittivity, \(\text{ F} \text{ m}^{-1}\)

\(\phi \)


\(\Phi \)

Level set function

\({\varvec{\lambda }}\)

Pore size distribution index

\(\mu _\pi \)

Dynamic viscosity of phase \({\uppi }\), Pa s

\(\upsilon \)

Poisson’s ratio

\(\theta \)

Time integration parameter

\(\rho _\mathrm{eff} \)

Effective density in multiphase domain, \(\text{ kg} \text{ m}^{-3}\)

\(\rho _\pi \)

Intrinsic phase averaged density of phase \(\pi , \text{ kg} \text{ m}^{-3}\)

\({\varvec{\sigma }}\)

Total stress, \(\text{ N} \text{ m}^{-2}\)

\({\varvec{\sigma _{1}}}^{\prime }\)

Effective stress, \(\text{ N} \text{ m}^{-2}\)

\({\varvec{\sigma }}^{\prime \prime }\)

Effective stress with Biot’s constant included, \(\text{ N} \text{ m}^{-2}\)

\(\sigma _\mathrm{e} \)

Electrical conductivity of bulk formation, \(\text{ S} \text{ m}^{-1}\)

\(\sigma _\pi \)

Electrical conductivity of phase \(\pi , \text{ S} \text{ m}^{-1}\)

\(\sigma _\mathrm{r} \)

Relative electric conductivity

\(\tau \)

Stabilization parameter

\(\zeta \)

Zeta potential, V

Subscripts and Superscripts


Effective stress


Gas phase

\(\pi \)

\(\pi \) phase


Residual saturation


Solid phase


Water phase



This project is financially sponsored by AgentschapNL of the Dutch ministry of economic affairs.


  1. Al-Khoury, R., Sluys, L.J.: A computational model for fracturing porous media. Int. J. Numer. Methods Eng. 70(4), 423–444 (2007). doi: 10.1002/nme.1886 Google Scholar
  2. Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Berlin (2010)CrossRefGoogle Scholar
  3. Bolève, A., Revil, A., Janod, F., Mattiuzzo, J.L., Jardani, A.: Forward modeling and validation of a new formulation to compute self-potential signals associated with ground water flow. Hydrol. Earth Syst. Sci. 11(5), 1661–1671 (2007). doi: 10.5194/hess-11-1661-2007 CrossRefGoogle Scholar
  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 199–259 (1990)Google Scholar
  5. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrol. Pap., Colo. State Univ. (1964)Google Scholar
  6. Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. 70(1), 10–17 (2003)CrossRefGoogle Scholar
  7. Cho, M.H., Choi, H.G., Yoo, J.Y.: A direct reinitialization approach of level-set/splitting finite element method for simulating incompressible two-phase flows. Int. J. Numer. Methods Fluids 67(11), 1637–1654 (2011). doi: 10.1002/fld.2437 CrossRefGoogle Scholar
  8. Class, H., Ebigbo, A., Helmig, R., Dahle, H., Nordbotten, J., Celia, M., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S., Jin, M., Krug, S., Labregere, D., Pawar, R., Sbai, A., Thomas, S., Trenty, L., Wei, L.: A benchmark study on problems related to CO$_{2}$ storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009). doi: 10.1007/s10596-009-9146-x CrossRefGoogle Scholar
  9. Esrig, M.J.: Pore pressures, consolidation, and electro-kinetics. J. Soil Mech. Fdns Div. Am. SOC. civ. Engrs. 4(94), 899–921 (1967)Google Scholar
  10. Gawin, D., Baggio, P., Schrefler, B.A.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20(8–9), 969–987 (1995). doi: 10.1002/fld.1650200817 Google Scholar
  11. Glover, P.W.J., Hole, M.J., Pous, J.: A modified Archie’s law for two conducting phases. Earth Planet. Sci. Lett. 180(3–4), 369–383 (2000). doi: 10.1016/s0012-821x(00)00168-0
  12. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Res. 2, 131–144 (1979). doi: 10.1016/0309-1708(79)90025-3 CrossRefGoogle Scholar
  13. Helmig, R.: Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer, Berlin (1997)CrossRefGoogle Scholar
  14. Ishido, T., Nishi, Y., Pritchett, J.W.: Application of self-potential measurements to geothermal reservoir engineering: characterization of fractured reservoirs. In: Thirty-fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 1–3 Feb 2010Google Scholar
  15. Ishido, T., Pritchett, J.W.: Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J. Geophys. Res. 104(B7), 15247–15259 (1999). doi: 10.1029/1999jb900093 CrossRefGoogle Scholar
  16. Jackson, M.D.: Multiphase electrokinetic coupling: insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model. J. Geophys. Res. 115(B7), B07206 (2010). doi: 10.1029/2009jb007092 CrossRefGoogle Scholar
  17. Khoei, A.R., Mohammadnejad, T.: Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comput. Geotech. 38(2), 142–166 (2011). doi: 10.1016/j.compgeo.2010.10.010 CrossRefGoogle Scholar
  18. Lewis, R.W., Roberts, P.J., Schrefler, B.A.: Finite element modelling of two-phase heat and fluid flow in deforming porous media. Transport Porous Media 4(4), 319–334 (1989). doi: 10.1007/bf00165778 CrossRefGoogle Scholar
  19. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, New York (1998)Google Scholar
  20. Linde, N., Jougnot, D., Revil, A., Matthäi, S.K., Arora, T., Renard, D., Doussan, C.: Streaming current generation in two-phase flow conditions. Geophys. Res. Lett. 34(3), L03306 (2007). doi: 10.1029/2006gl028878 CrossRefGoogle Scholar
  21. Liu, Y., Wang, L., Yu, B.: Sharp front capturing method for carbon dioxide plume propagation during injection into a deep confined aquifer. Energy Fuels 24(2), 1431–1440 (2010). doi: 10.1021/ef9010498 CrossRefGoogle Scholar
  22. Mitchell, J.K.: Fundamentals of Soil Behavior. Wiley, New York (1993)Google Scholar
  23. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931)CrossRefGoogle Scholar
  24. Perot, J.B.: Discrete conservation properties of unstructured mesh schemes. Annu. Rev. Fluid Mech. 43, 299–318 (2011)CrossRefGoogle Scholar
  25. Pruess, K., García, J.: Multiphase flow dynamics during CO$_2$ disposal into saline aquifers. Environ. Geol. 42(2), 282–295 (2002). doi: 10.1007/s00254-001-0498-3 CrossRefGoogle Scholar
  26. Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Intercomparison of numerical simulation codes for geologic disposal of CO$_2$ (2002)Google Scholar
  27. Rahman, N.A., Lewis, R.W.: Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems. Comput. Geotech. 24(1), 41–63 (1999). doi: 10.1016/s0266-352x(98)00029-9
  28. Reppert, P.M., Morgan, F.D.: Temperature-dependent streaming potentials: 1. Theory. J. Geophys. Res. 108(B11), 2546 (2003). doi: 10.1029/2002jb001754 CrossRefGoogle Scholar
  29. Revil, A., Cerepi, A.: Streaming potentials in two-phase flow conditions. Geophys. Res. Lett. 31(11), L11605 (2004). doi: 10.1029/2004gl020140 CrossRefGoogle Scholar
  30. Revil, A., Schwaeger, H., Cathles III, L.M., Manhardt, P.D.: Streaming potential in porous media 2. Theory and application to geothermal systems. J. Geophys. Res. 104(B9), 20033–20048 (1999). doi: 10.1029/1999jb900090 CrossRefGoogle Scholar
  31. Rutqvist, J., Tsang, C.-F.: A study of caprock hydromechanical changes associated with CO$_2$ injection into a brine formation. Environ. Geol. 42(2), 296–305 (2002). doi: 10.1007/s00254-001-0499-2 CrossRefGoogle Scholar
  32. Saunders, J.H., Jackson, M.D., Pain, C.C.: Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential. Geophysics 73(5), E165–E180 (2008). doi: 10.1190/1.2959139 CrossRefGoogle Scholar
  33. Schrefler, B.A.: Computer modelling in environmental geomechanics. Comput. Struct. 79(22–25), 2209–2223 (2001)CrossRefGoogle Scholar
  34. Sill, W.R.: Self-potential modeling from primary flows. Geophysics 48(1), 76–86 (1983). doi: 10.1190/1.1441409 CrossRefGoogle Scholar
  35. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980). doi: 10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  36. Wang, H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)Google Scholar
  37. Worthington, M.H., Saunders, J., Pain, C.C., Jackson, M.: Electrokinetic and VSP monitoring of fluid flow in petroleum reservoirs. Paper presented at the 64th EAGE conference & exhibition, European Association of Geoscientists & Engineers, 2002Google Scholar
  38. Wurmstich, B., Morgan, F.D.: Modeling of streaming potential responses caused by oil well pumping. Geophysics 59(1), 46–56 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations