Advertisement

Transport in Porous Media

, Volume 98, Issue 1, pp 59–79 | Cite as

Effect of Thermal Modulation on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid

  • J. C. UmavathiEmail author
Article

Abstract

The effect of time-periodic temperature modulation at the onset of convection in a Boussinesq porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion. Three types of boundary temperature modulations are considered namely, symmetric, asymmetric, and only the lower wall temperature is modulated while the upper wall is held at constant temperature. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of modulation, concentration Rayleigh number, porosity, Lewis number, and thermal capacity ratio. It has been shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature. The nanofluid is found to have more stabilizing effect when compared to regular fluid. Low frequency is destabilizing, while high frequency is always stabilizing for symmetric modulation. Asymmetric modulation and only lower wall temperature modulation is stabilizing for all frequencies when concentration Rayleigh number is greater than one.

Keywords

Thermal modulation Nanofluid Onset of convection  Porous medium 

List of Symbols

\(c\)

Nanofluid specific heat at constant pressure

\(c_p \)

Specific heat of the nanoparticle material

\(\left( {\rho c} \right)_\mathrm{m} \)

Effective heat capacity of the porous medium

\(d_\mathrm{p} \)

Nanoparticle diameter

\(g\)

Gravitational acceleration

\(D_\mathrm{B} \)

Brownian diffusion coefficient (\({\mathrm{m}^{2}}/\mathrm{s}\))

\(D_\mathrm{T} \)

Thermophoretic diffusion coefficient (\({\mathrm{m}^{2}}/\mathrm{s}\))

\(h_\mathrm{p} \)

Specific enthalpy of the nanoparticle material

\(H\)

Dimensional layer depth (\(m\))

\(j_\mathrm{p} \)

Diffusion mass flux for the nanoparticles

\(j_\mathrm{p,T} \)

Thermophoretic diffusion

\(k\)

Thermal conductivity of the nanofluid

\(k_\mathrm{B} \)

Boltzman’s constant

\(k_\mathrm{m} \)

Effective thermal conductivity of the porous medium

\(k_\mathrm{p} \)

Thermal conductivity of the particle material

\(Le\)

Lewis number

\(N_\mathrm{A} \)

Modified diffusivity ratio

\(N_\mathrm{B} \)

Modified particle-density increment

\(p^{*}\)

Pressure

\(p\)

Dimensionless pressure, \({p^{*}K}/{\mu \alpha _\mathrm{m}}\)

\(q\)

Energy flux relative to a frame moving with the nanofluid velocity v

\(Ra\)

Thermal Rayleigh–Darcy number

\(Rm\)

Basic-density Rayleigh number

\(Rn\)

Concentration Rayleigh number

\(t^{*}\)

Time

\(t\)

Dimensionless time, \({t^{*}\alpha _\mathrm{m} }/{\sigma H^{2}}\)

\(T^{*}\)

Nanofluid temperature

\(T\)

Dimensionless temperature, \(\frac{T^{*}-T_\mathrm{c}^*}{T_\mathrm{h}^*-T_\mathrm{c}^*}\)

\(T_\mathrm{c}^*\)

Temperature at the upper wall

\(T_\mathrm{h}^*\)

Temperature at the lower wall

\(T_\mathrm{R} \)

Reference temperature

\(\left({u,v,w} \right)\)

Dimensionless Darcy velocity components \(\left( {u^{*},v^{*},w^{*}} \right)H/{\alpha _\mathrm{m} }\)

\(v\)

Nanofluid velocity

\(v_\mathrm{D} \)

Darcy velocity \(\varepsilon \text{ v}\)

\(v_\mathrm{D}^{*} \)

Dimensionless Darcy velocity \(\left( {u^{*},v^{*},w^{*}} \right)\)

\(V_\mathrm{T} \)

Thermophoretic velocity

\(\left( {x,y,z} \right)\)

Dimensionless Cartesian coordinate \({\left( {x^{*},y^{*},z^{*}} \right)}/H\); \(z\) is the vertically upward coordinate

\(\left({x^{*},y^{*},z^{*}} \right)\)

Cartesian coordinates

Greek symbols

\(\alpha _\mathrm{m} \)

Thermal diffusivity of the porous medium, \(\frac{k_\mathrm{m} }{\left( {\rho c_p } \right)_\mathrm{f} }\)

\(\tilde{\beta }\)

Proportionality factor

\(\varepsilon \)

Porosity of the medium

\(\varepsilon _\mathrm{t} \)

Amplitude of the modulation

\(\mu \)

Viscosity of the fluid

\(\tilde{\mu }\)

Effective viscosity of the porous medium

\(\rho \)

Fluid density

\(\rho _\mathrm{p} \)

Nanoparticle mass density

\(\sigma \)

Heat capacity ratio

\(\phi ^{*}\)

Nanoparticle volume fraction

\(\phi \)

Relative nanoparticle volume fraction, \(\frac{\phi ^{*}-\phi _\mathrm{c}^*}{\phi _\mathrm{h}^*-\phi _\mathrm{c}^*}\)

\(\varOmega \)

Dimensional frequency

\(\omega \)

Dimensionless frequency \(\left({=}{\varOmega H^{2}/k} \right)\)

\(\psi \)

Phase angle: \(\psi =0\), symmetric modulation; \(\psi =\pi \), antisymmetric modulation; \(\psi =-i\infty ,\) only lower wall temperature modulation

References

  1. Abu-Nada, E., Masoud, Z., Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35, 657–665 (2008)CrossRefGoogle Scholar
  2. Abu-Nada, E.: Effects of variable viscosity and thermal conductivity of \(\text{ Al}_{2}\text{ O}_{3}\)-water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Mass Transf. 30, 679–690 (2009)Google Scholar
  3. Agarwal, S., Bhaduria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal nonequilibrium model. Trans. Porous Media 90, 627–654 (2011)CrossRefGoogle Scholar
  4. Agarwal, S., Bhadauria, B.S., Siddheswar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Special Top. Rev. Porous Media 2(1), 53–64 (2011)CrossRefGoogle Scholar
  5. Agarwal, S., Saceti, N.M., Charan, P., Bhaduria, B.S., Singh, A.K.: Nonlinear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Media 93, 29–49 (2012)CrossRefGoogle Scholar
  6. Bhaduria, B.S., Agarwal, S.: Convective transport in a nanofluid saturated porous layer with thermal non-equilibrium model. Transp. Porous Media 88, 107–131 (2011a)CrossRefGoogle Scholar
  7. Bhaduria, B.S., Agarwal, S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87, 585–602 (2011b)CrossRefGoogle Scholar
  8. Buongiorno, J.: Convective transport in nanofluids. ASME J Heat Transf. 128, 240–250 (2006)CrossRefGoogle Scholar
  9. Buongiorno, J., Hu, W.: Nanofluid coolants for advanced nuclear power plants. Paper No. 5705. In: Proceedings of ICAPP05, Seoul, 15–19 May 2005Google Scholar
  10. Chand, R., Rana, G.C.: On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int. J. Heat Mass Transf. 55, 5417–5424 (2012)CrossRefGoogle Scholar
  11. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows. ASME, FED. 231/MD 66, pp. 99–105 (1995).Google Scholar
  12. Choi, S.: Nanofluid Technology: Current Status and Future Research. Energy Technology Division, Argonne National Laboratory, Argonne (1999)Google Scholar
  13. Davis, S.H.: The stability of time periodic flows. Annu. Rev. Fluid Mech. 8, 57–74 (1976)CrossRefGoogle Scholar
  14. Eastman, J.A., Choi, S.U.S., Yu, W., Thompson, L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)CrossRefGoogle Scholar
  15. Finucane, R.G., Kelly, R.E.: Onset of instability in a fluid layer heated sinusoidally from below. Int. J. Heat Mass Transf. 19, 71–85 (1976)CrossRefGoogle Scholar
  16. Ghasemi, B., Aminossadati, S.M.: Natural convection heat transfer in an enclosure filled with a water-CuO nanofluid. Numer. Heat Transf. A 55, 807–823 (2009)CrossRefGoogle Scholar
  17. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefGoogle Scholar
  18. Kim, J., Kang, Y.T., Choi, C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)CrossRefGoogle Scholar
  19. Kim, J., Choi, C.K., Kang, Y.T., Kim, M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)CrossRefGoogle Scholar
  20. Kim, J., Kang, Y.T., Choi, C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)CrossRefGoogle Scholar
  21. Kleinstreuer, C., Li, J., Koo, J.: Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51, 5590–5597 (2008)CrossRefGoogle Scholar
  22. Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010a)CrossRefGoogle Scholar
  23. Kuznetsov, A.V., Nield, D.A.: The onset of double-diffusive nanofluis convection in a layer of a saturated porous medium. Transp. Porous Media 85, 941–951 (2010b)CrossRefGoogle Scholar
  24. Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous medium saturated by a nanofluid: Brinkman model. Transp. Porous Media 81, 409–422 (2010c)CrossRefGoogle Scholar
  25. Kuznetsov, A.V., Nield, D.A.: The effect of local thermal nonequilibrium on the onset of convection in a porous medium layer saturated by nanofluid: Brinkman model. J. Porous Media 14, 285–293 (2011)CrossRefGoogle Scholar
  26. Malashetty, M.S., Basavaraja, D.: Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium. Heat Mass Transf. 38, 551–563 (2002)CrossRefGoogle Scholar
  27. Malashetty, M.S., Basavaraja, D.: The effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Eng. 8(3), 425–439 (2003)Google Scholar
  28. Malashetty, M.S., Basavaraja, D.: The effect of thermal modulation on the onset of double diffusive convection. Int. J. Therm. Sci. 40(1), 91–101 (2004)Google Scholar
  29. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)CrossRefGoogle Scholar
  30. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluids. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)Google Scholar
  31. Nield, D.A., Kuznetsov, A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 052405 (2010)CrossRefGoogle Scholar
  32. Nield, D.A., Kuznetsov, A.V.: The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid. Trans. Porous Media 87, 765–775 (2011)CrossRefGoogle Scholar
  33. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a layer of porous medium saturated by a nanofluid: effects of conductivity and viscosity variation and cross-diffusion. Trans. Porous Media 92, 837–846 (2012)CrossRefGoogle Scholar
  34. Putra, N., Roetzel, W., Das, S.K.: Natural convection of nano-fluids. Heat Mass Transf. 39, 775–784 (2003)CrossRefGoogle Scholar
  35. Rosenblat, S., Herbert, D.M.: Low frequency modulation of thermal instability. J. Fluid Mech. 43, 385–389 (1970)CrossRefGoogle Scholar
  36. Rosenblat, S., Tanaka, G.A.: Modulation of thermal convection instability. Phys. Fluids 14, 1319–1322 (1971)CrossRefGoogle Scholar
  37. Rudraiah, N., Malashetty, M.S.: Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J Heat Transf. 122, 685–689 (1990)CrossRefGoogle Scholar
  38. Sheu, L.J.: Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp. Porous Media 88, 461–477 (2011)CrossRefGoogle Scholar
  39. Shivakumara, I.S., Lee, J., Malashetty, M.S., Sureshkumar, S.: Effect of thermal modulation on the onset of convection in Walters B viscoelastic fluid-saturated porous medium. Transp. Porous Media 87, 291–307 (2011)CrossRefGoogle Scholar
  40. Tzou, D.Y.: Instability of nanofluids in natural convection. ASME J Heat Transf. 130, 072401 (2008a)CrossRefGoogle Scholar
  41. Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008b)CrossRefGoogle Scholar
  42. Venezian, G.: Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35, 243–254 (1969)CrossRefGoogle Scholar
  43. Wen, D., Ding, Y.: Natural convective heat transfer of suspensions of titanium dioxide nsnoparticles (nanofluids). IEEE Trans. Nanotechnol. 5, 220–227 (2006)CrossRefGoogle Scholar
  44. Yadav, D., Bhargava, R., Agrawal, G.S.: Boundary and internal source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 60, 244–254 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsGulbarga UniversityGulbargaIndia

Personalised recommendations