Skip to main content
Log in

Mobility and Interaction of Heavy Metals in a Natural Soil

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We study the mobility and interaction under competing conditions observed for copper (\(\text{ Cu}^{2+}\)) and zinc (\(\text{ Zn}^{2+}\)) ions in the context of laboratory-scale experiments performed in natural soil columns. The experiments focus on the analysis of solute breakthrough curves (BTCs) obtained after injection of an aqueous solution containing similar concentrations of the two metal ions into a soil column fully saturated with double deionized water. Transport of the competing ions is tested for the same soil under aerobic and anaerobic conditions. Measurements show that the species with lower affinity for the soil, \(\text{ Zn}^{2+}\), migrates occupying all available adsorption sites, and is then progressively replaced by the ion with higher affinity, \(\text{ Cu}^{2+}\). The two ions are displaced in the system with different effective retardation. The slowest species replaces the sorbed ions, resulting in observed \(\text{ Zn}^{2+}\) concentrations that display a non-monotonic behavior in time and which, for a certain period, are larger than the concentration supplied continuously at the inlet. In the absence of a complete geochemical characterization of the system, we show that the measured concentrations of both metals can be interpreted through simple models based on a set of coupled partial differential and algebraic equations, involving a small subset of aqueous and adsorbed species that are present in the system. Depending on the model considered, the relationship between aqueous and adsorbed ion concentrations is described at equilibrium by a Gaines–Thomas (GT) formulation, a competitive Sheindorf–Rebhun–Sheintuch (SRS) isotherm, or an Extended Langmuir (EL) isotherm, respectively. The GT formulation provides the best interpretation of the observed behavior among the models tested. We find that employing these simple models, which account only for the main governing reactive processes, allows reasonable estimation of the observed BTCs in experiments where only partial geochemical datasets are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GT:

Gaines–Thomas

SRS:

Sheindorf–Rebhun–Sheintuch

EL:

Extended Langmuir

ICP-MS:

inductively coupled plasma mass spectrometry

BTC:

breakthrough curve

ADE:

advection–dispersion equation

References

  • Altmann, R.S., Bourg, A.C.M.: Cadmium mobilization under conditions simulating anaerobic to aerobic transition in landfill leachate-polluted aquifer. Water Air Soil Pollut. 94, 385–392 (1997)

    Article  Google Scholar 

  • Antoniadis, V.A., McKinley, J.D., Zuhairi, W.Y.W.: Single-element and competitive metal mobility measured with column infiltration and batch tests. J. Environ. Qual. 36, 53–60 (2007)

    Article  Google Scholar 

  • Appelo, C.A.J., Postma, D.: A consistent model for surface complexation on birnessite (\(\text{ delta-MnO}_{2}\)) and its application to a column experiment. Geochim. Cosmochim. Acta 64(22), 3931–3931 (1999)

    Article  Google Scholar 

  • Atia, A.A., Donia, A.M., Elwakeel, K.Z.: Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Sep. Purif. Technol. 43, 43–48 (2005)

    Google Scholar 

  • Barry, D.A., Starr, J.L., Parlange, J.-Y., Braddock, R.D.: Numerical analysis of the snow-plow effect. Soil Sci. Soc. Am. J. 47(5), 862–868 (1983)

    Article  Google Scholar 

  • Barrow, N.J., Cartes, P., Mora, M.L.: Modification to the Freundlich equation to describe anion sorption over a large range and to describe competition between pairs of ions. Eur. J. Soil Sci. 56, 601–606 (2005)

    Article  Google Scholar 

  • Barrow, N.J.: The description of sorption curves. Eur. J. Soil Sci. 59, 900–910 (2008). doi:10.1111/j.1365-2389.2008.01041.x

    Article  Google Scholar 

  • Bianchi, A., Petrangeli Papini, M., Corsi, A., Behra, P., Beccari, M.: Competitive transport of cadmium and lead through a natural porous medium: influence of the solid/liquid interface processes. Water Sci. Technol. 48, 9–16 (2003)

    Google Scholar 

  • Bianchi Janetti, E., Dror, I., Riva, M., Guadagnini, A., Berkowitz, B.: Estimation of single-metal and competitive sorption isotherms through maximum likelihood and model quality criteria. Soil Sci. Soc. Am. J. 76(4), 1229–1245 (2012)

    Article  Google Scholar 

  • Brooks, S.C., Taylor, D.L., Jardine, P.M.: Reactive transport of EDTA-complexed cobalt in the presence of ferrihydrite. Geochim. Cosmochim. Acta 60(11), 1899–1908 (1996)

    Article  Google Scholar 

  • Cornu, J.Y., Denaix, L., Schneider, A., Pellerin, S.: Temporal evolution of redox processes and free Cd dynamics in a metal-contaminated soil after rewetting. Chemosphere 70, 306–314 (2007)

    Article  Google Scholar 

  • Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B.: Reactive transport in disordered media: Role of fluctuations in interpretation of laboratory experiments. Adv. Water Resour. (2012). doi:10.1016/j.advwatres.2011.12.008 (in press)

  • Freundlich, H.M.F.: Over the sorption in solution. J. Phys. Chem. 57, 385–470 (1906)

    Google Scholar 

  • Figueira, M.M., Volesky, B., Azarian, K., Ciminelli, V.S.T.: Biosorption column performance with a metal mixture. Environ. Sci. Technol. 34, 4320–4326 (2000)

    Article  Google Scholar 

  • Fontes, M.P.F., Gomes, P.C.: Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Appl. Geochem. 18, 795–804 (2003)

    Article  Google Scholar 

  • Gaines, G., Thomas, H.: Adsorption studies on clay minerals, ii, a formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714–718 (1953)

    Article  Google Scholar 

  • Gu, B.H., Wu, W.M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S., Jardine, P.M.: Bioreduction of uranium in a contaminated soil column. Environ. Sci. Technol. 39(13), 4841–4847 (2005)

    Article  Google Scholar 

  • Harter, D., Naidu, R.: An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci. Soc. Am. J. 65, 597–612 (2001)

    Article  Google Scholar 

  • Hawari, A.H., Mulligan, C.N.: Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass. Process Biochem. 42, 1546–1552 (2007)

    Article  Google Scholar 

  • Hinz, C., Selim, H.M.: Transport of Zn and Cd in soils—experimental evidence and modeling approaches. Soil Sci. Soc. Am. J. 58(5), 1316–1327 (1994)

    Article  Google Scholar 

  • Inglett, P.W., Reddy, K.R., Corstanje, R.: Anaerobic soils. In: Hillel, D. (ed.) Encyclopedia of Soils in the Environment, pp. 71–78. Academic Press, New York (2005)

    Google Scholar 

  • Jakob, A., Pfingsten, W., Van Loon, L.: Effects of sorption competition on caesium diffusion through compacted argillaceous rock. Geochim. Cosmochim. Acta 73(9), 2441–2456 (2009)

    Article  Google Scholar 

  • Kerner, M., Wallmann, K.: Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe estuary during the tidal cycle. Estuarine Coastal Shelf Sci. 35, 371–393 (1992)

    Article  Google Scholar 

  • Kittrick, J.A., Lee, F.Y.: Electron microprobe analysis of elements associated with zinc and copper in an oxidizing and an anaerobic soil environment. Soil Sci. Soc. Am. J. 48, 548–554 (1984)

    Article  Google Scholar 

  • Kratochvil, D., Volesky, B.: Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300 (1998)

    Article  Google Scholar 

  • Lack, J.G., Chaunduri, S.K., Kelly, S.D., Kemner, K.M., O’Connor, S.M., Coates, J.D.: Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). App. Environ. Microbiol. 68, 2704–2710 (2002)

    Article  Google Scholar 

  • Langmuir, I.: The sorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  • Liao, L., Selim, H.M.: Competitive sorption of nickel and cadmium in different soils. Soil Sci. 174, 549–555 (2009)

    Article  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., Maentasti, E.: Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J. Colloid Interface Sci. 299, 537–546 (2006)

    Article  Google Scholar 

  • MATLAB 2011: MATLAB Version 2011a. The MathWorks Inc., Natick (2011)

  • Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B., Li, L.: Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ. Modell. Softw. 21(5), 615–628 (2006)

    Article  Google Scholar 

  • McBride, M.B.: Environmental Chemistry of Soils. Oxford University Press, New York (1994)

    Google Scholar 

  • McCormick, P.V., Cairns, J.: Algae as indicators of environmental change. J. Appl. Phycol. 6(5–6), 509–526 (1994). doi:10.1007/BF02182405

    Article  Google Scholar 

  • Naja, G., Volesky, B.: Multi-metal biosorption in a fixed-bed flow-through column. Colloids Surf. A 281, 194–201 (2006)

    Article  Google Scholar 

  • Nitzsche, O., Meinrath, G., Merkel, B.: Database uncertainty as a limiting factor in reactive transport prognosis. J. Contam. Hydrol. 44, 223–237 (2000)

    Article  Google Scholar 

  • Patrick Jr, W.H., Khalid, R.D.: Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186, 53–55 (1974)

    Article  Google Scholar 

  • Porta, G., Riva, M., Guadagnini, A.: Upscaling solute transport in porous media in the presence of an irreversible bimolecular reaction. Adv. Water Resour. 35, 151–162 (2012). doi:10.1016/j.advwatres.2011.09.004

    Article  Google Scholar 

  • Rubin, S., Dror, I., Berkowitz, B.: Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J. Contam. Hydrol. 132, 28–36 (2012). doi:10.1016/j.jconhyd.2012.02.005

    Article  Google Scholar 

  • Saha, U.K., Taniguchi, S., Sakurai, K.: Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes. Soil Sci. Soc. Am. J. 66, 117–128 (2002)

    Google Scholar 

  • Sanchez-Vila, X., Bolster, D.: An analytical approach to transient homovalent cation exchange problems. J. Hydrol. 378, 281–289 (2009)

    Article  Google Scholar 

  • Sanchez-Vila, X., Fernandez, D., Guadagnini, A.: Interpretation of column experiments of transport of solutes undergoing an irreversible bimolecular reaction using a continuum approximation. Water Resour. Res. 46, W12510 (2010). doi:10.1029/2010WR009539

    Article  Google Scholar 

  • Selim, H.M., Buchter, B., Hinz, C., Ma, L.: Modeling the transport and retention of Cd in soils: multireaction and multicomponent approaches. Soil Sci. Soc. Am. J. 56(4), 1004–1015 (1992)

    Article  Google Scholar 

  • Selim, H.M., Sparks, D.L.: Heavy Metals Release in Soils. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  • Seo, D.C., Yu, K., DeLaune, R.D.: Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere 73, 1757–1764 (2008)

    Article  Google Scholar 

  • Seuntjens, P., Tirez, K., Simunek, J., van Genuchten, MTh, Cornelis, C., Geuzens, P.: Aging effects on cadmium transport in undisturbed contaminated sandy soil columns. J. Environ. Qual. 30, 1040–1050 (2001)

    Article  Google Scholar 

  • Sheindorf, C., Rebhun, M., Sheintuch, M.: A Freundlich-type multicomponent isotherm. J. Colloid Interface Sci. 79, 136–141 (1981)

    Article  Google Scholar 

  • Sparks, D.L.: Environmental Soil Chemistry. Academic Press, San Diego (1995)

    Google Scholar 

  • Srivastava, P., Singh, B., Angove, M.: Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Interface Sci. 290, 28–38 (2005)

    Article  Google Scholar 

  • Starr, J.L., Parlange, J.-Y.: Dispersion in soil columns—snow plow effect. Soil Sci. Soc. Am. J. 43(3), 448–450 (1979)

    Article  Google Scholar 

  • Teuchies, J., Beauchard, O., Jacobs, S., Meire, P.: Evolution of sediment metal concentrations in a tidal marsh restoration project. Sci. Total Environ. 419, 187–195 (2012). doi:10.1016/j.scitotenv.2012.01.016

    Google Scholar 

  • Tsang, D.C.W., Lo, I.M.C.: Competitive Cu and Cd sorption and transport in soils: a combined batch kinetics, column, and sequential extraction study. Environ. Sci. Technol. 40, 6655–6661 (2006)

    Article  Google Scholar 

  • Tyler, L.D., McBride, M.B.: Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci. 134, 198–205 (1982)

    Article  Google Scholar 

  • Valocchi, A., Street, R., Roberts, P.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17(5), 1517–1527 (1981)

    Article  Google Scholar 

  • Voegelin, A., Vulava, V.M., Kretzschmar, R.: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil. Environ. Sci. Technol. 35, 1651–1657 (2001)

    Google Scholar 

  • Voegelin, A., Vulava, V.M., Kuhnen, F., Kretzschmar, R.: Multicomponent transport of major cations predicted from binary adsorption experiments. J. Contam. Hydrol. 46, 319–338 (2000)

    Article  Google Scholar 

  • Vulava, V., Kretzschmar, R., Rusch, U., Grolimund, D., Westall, J., Borkovec, M.: Cation competition in a natural subsurface material: modelling of sorption equilibria. Environ. Sci. Technol. 34, 2149–2155 (2000)

    Article  Google Scholar 

  • Williams, J.D.H., Syers, J.K., Shulka, S.S., Harris, R.F.: Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environ. Sci. Technol. 5, 1113–1120 (1971)

    Article  Google Scholar 

  • Yang, R.T.: Gas separation by sorption processes. Butterworths, Boston (1987)

    Google Scholar 

  • Yaron, B., Dror, I., Berkowitz, B.: Soil-Subsurface Change: Chemical Pollutant Impacts. Springer, Heidelberg (2012)

    Book  Google Scholar 

  • Zhang, H., Selim, H.M.: Modeling competitive arsenate-phosphate retention and transport in soils: a multi-component multi-reaction approach. Soil Sci. Soc. Am. J. 71(4), 1267–1277 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

X. S. acknowledges financial support by the Spanish Ministry of Science and Innovation through the projects Consolider-Ingenio 2010 (ref. CSD2009-00065) and RARA-AVIS (ref. GCL2009-1114). B. B. acknowledges financial support from the Israel Science Foundation (Grant No. 221/11). M. R., A. G., and E. B. J. acknowledge financial support from the Politecnico di Milano (Project GEMINO, Progetti di ricerca 5 per mille junior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Bianchi Janetti.

Appendices

Appendix 1

Each experiment was performed in duplicate to ensure reproducibility. Each measurement was repeated six times to allow error quantification. Figure 7 shows the two replicates illustrating the degree of reproducibility of the experiment. The total experimental and analysis error is represented in terms of error bars computed on the basis of the performed replicates.

Fig. 7
figure 7

Time dependence of concentration of metal ions eluted from the soil column under aerobic condition. The constant inlet concentrations, \(C_{0,\mathrm{Cu}} = 1.55\, \text{ mmol} \text{ L}^{-1},\, C_{0,\mathrm{Zn}} = 1.77\, \text{ mmol} \text{ L}^{-1}\), are shown for reference (\(dotted\) \(lines\)). \(Error\) \(bars\) corresponding to \(\pm 2\sigma \) are reported, \(\sigma \) being the estimated standard deviation of the performed measurement replicates. The two replicates of the same experiment are indicated as I and II

Appendix 2

Note that, by way of (4), Eq. (1) for \(i=3\) can be written as

$$\begin{aligned} \left( {1+\frac{\gamma }{z_3}K_a} \right)\frac{\partial C_3}{\partial t}=L(C_3);\quad L(C_3)=-v\frac{\partial C_3}{\partial x}+D\frac{\partial ^{2} C_3}{\partial x^{2}} \end{aligned}$$
(12)

Equation (12) is a classical one-dimensional ADE with constant (in space and time) retardation and can be solved independently of the other equations. It provides the space-time dependence of \(C_3\), i.e., \(C_3 (x,t)\), once a value of \(z_3\) (e.g., \(z_3 = 2\)) is assumed. We then replace \(C_3 (x,t)\) into (4) to obtain \(\beta _3 (x,t)\). This allows rewriting (2) as

$$\begin{aligned} \beta _1 (x,t)+\beta _2 (x,t)=1-\beta _3 (x,t)=A(x,t) \end{aligned}$$
(13)

Considering (1), we can introduce

$$\begin{aligned} u^{*}=\sum _{i=1}^3 {C_i} \end{aligned}$$
(14)

The quantity \(u^{*}\) is a conservative component and satisfies a one-dimensional conservative ADE. We then define \(u=u^{*}-C_3 =C_1 +C_2\). Considering (2), (3), and (14), and noting that \(z_1 =z_2 =2\), we can write \(\beta _1\) as a function of \(C_1\) according to (for simplicity, we drop the space-time dependence from quantities)

$$\begin{aligned}&K_{12}^2 = \left( {\frac{\beta _1}{C_1}} \right)\left({\frac{u-C_1}{A-\beta _1}} \right);\quad \quad K_{12}^2 A-K_{12}^2 \beta _1 =\left( {\frac{u-C_1}{C_1}} \right)\beta _1 \nonumber \\&K_{12}^2 A=\left( {\frac{u-C_1}{C_1}+K_{12}^2} \right)\beta _1;\quad \beta _1 =K_{12}^2 A\left( {\frac{u-C_1}{C_1}+K_{12}^2 } \right)^{-1} \nonumber \\&\beta _1 =K_{12}^4 A\frac{C_1}{u-C_1 +C_1 K_{12}^2} \end{aligned}$$
(15)

From the last of (15) it follows that

$$\begin{aligned} \frac{\partial \beta _1}{\partial t}&= \frac{\partial \beta _1}{\partial C_1}\frac{\partial C_1}{\partial t}+\frac{\partial \beta _1}{\partial u}\frac{\partial u}{\partial t}\end{aligned}$$
(16)
$$\begin{aligned} \frac{\partial \beta _1}{\partial C_1}&= K_{12}^4 A\frac{u-C_1 +C_1 K_{12}^2 -(K_{12}^2 -1)}{\left( {u-C_1 +C_1 K_{12}^2 } \right)^{2}}\end{aligned}$$
(17)
$$\begin{aligned} \frac{\partial \beta _1}{\partial u}&= \frac{-K_{12}^4 AC_1}{\left( {u-C_1 +C_1 K_{12}^2 } \right)^{2}} \end{aligned}$$
(18)

Introducing (16)–(18) into (1) allows writing the partial differential equation governing the evolution of \(C_1\)

$$\begin{aligned}&\left[ {1+\frac{\gamma }{2}K_{12}^4 A\frac{u-C_1 +C_1 K_{12}^2 -(K_{12}^2 -1)}{\left( {u-C_1 +C_1 K_{12}^2 } \right)^{2}}} \right]\frac{\partial C_1 }{\partial t}-\left[ {\frac{K_{12}^4 AC_1}{\left( {u-C_1 +C_1 K_{12}^2 } \right)^{2}}} \right]\frac{\partial u}{\partial t}\nonumber \\&\quad =-\frac{v}{\phi }\frac{\partial C_1}{\partial x}+D\frac{\partial ^{2} C_1}{\partial x^{2}} \end{aligned}$$
(19)

Equation (19) is nonlinear in \(C_1\) and is solved numerically. Note that (19) has the format of a classical ADE with a retardation and decay term (the second term on the left hand side). The retardation factor is highly non-linear. The decay term can be either positive or negative, depending on the sign of \(\partial u/\partial t\). Once \(C_1\) is known, one can calculate \(C_2\) as

$$\begin{aligned} C_2 =u-C_1 \end{aligned}$$
(20)

Appendix 3

See Tables 5 and 6.

Table 5 Saturation indices associated with the input solution
Table 6 Saturation indices associated with the solution corresponding to the peak value of \(\text{ Zn}^{2+}\) concentration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi Janetti, E., Dror, I., Riva, M. et al. Mobility and Interaction of Heavy Metals in a Natural Soil. Transp Porous Med 97, 295–315 (2013). https://doi.org/10.1007/s11242-013-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0125-2

Keywords

Navigation