Transport in Porous Media

, Volume 98, Issue 1, pp 15–34 | Cite as

Experimental Measurements of Stress and Chemical Controls on the Evolution of Fracture Permeability

  • Thomas P. McGuire
  • Derek Elsworth
  • Zvi Karcz


We explore how fracture permeability in confined tight carbonates evolves due to flow of reactive fluids. Core plugs of the Capitan Massive Limestone are saw-cut to form a smooth axial fracture that is subsequently roughened to control the fracture surface topography. Either distilled water or distilled water–ammonium chloride solutions are circulated through these plugs, where fracture roughness, inlet fluid pH, and confining stresses are controlled. Throughout the experiment we measure the fluid flow rate and chemical composition of the effluent fluid. Mass balance, conducted on the effluent fluid mass and on dissolved mineral components, independently constrains the mineral mass removal. We use an idealized lumped parameter model of asperity supported fractures undergoing simultaneous stress corrosion cracking-induced diffusion and free-face dissolution to infer theoretical rates of aperture loss or gain. This model incorporates the roles of confining stress, fracture contact area, and composition and reactivity of the permeating fluid while identifying zones of diffusion-dominated mass transfer within the fracture. These theoretical rates of aperture strain are compared to those inferred from the experimentally determined permeability evolution and permeating fluid mineral mass balance. By measuring in regimes of both increasing and decreasing permeability we quantitatively constrain the transition between fracture-gaping and fracture-closing modes of behavior. We parameterize this transition in permeability evolution by the ratio of mechanically to chemically controlled dissolved mass fluxes. The transition from regimes of closing to regimes of gaping occurs at unity (\(\chi \approx 1\)) when stress and chemically driven mass fluxes are theoretically equal.


Carbonate fracture Fracture permeability evolution  Stress corrosion cracking Fracture dissolution Fracture strain 



We would like to thank ExxonMobil Upstream Research Company: Stratigraphic and Reservoir Systems division for their generous research grant.


  1. Croizé, D., Renard, F., Bjørlykke, K., Dysthe, D.: Experimental calcite dissolution under stress: evolution of grain contact microstructure during pressure solution creep. J. Geophys. Res. (2010). doi: 10.1029/2010JB000869
  2. Daccord, G., Liétard, O., Lenormand, R.: Chemical dissolution of a porous medium by a reactive fluid— II. Convection vs reaction, behavior diagram. Chem. Eng. Sci. 48, 179–186 (1993)CrossRefGoogle Scholar
  3. Detwiler, R.: Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures. J. Geophys. Res. (2008). doi: 10.1029/2008JB005697
  4. Detwiler, R., Rajaram, H.: Predicting dissolution patterns in variable aperture fractures: evaluation of an enhanced depth-averaged computational model. Water Resour. Res. (2007). doi: 10.1029/2006WR005147
  5. Dijk, P., Berkowitz, B.: Precipitation and dissolution of reactive solutes in fractures. Water Resour. Res. 34, 457–470 (1998)CrossRefGoogle Scholar
  6. Donohue, S., Sullivan, C., Long, M.: Particle breakage during cyclic triaxial loading of a carbonate sand. Géotech. (2009). doi: 10.1680/geot.2008.T.003
  7. Durham, W., Bourcier, W., Burton, E.: Direct observation of reactive flow in a single fracture. Water Resour. Res. 37(1), 1–12 (2001). doi: 10.1029/2000WR900228
  8. Hoeffner, M., Fogler, H.: Pore evolution and channel formation during flow and reaction in porous media. Am. Inst. Chem. Eng. 34, 45–54 (1988)CrossRefGoogle Scholar
  9. Hudson, J.: Comprehensive Rock Engineering: Principles, Practice & Projects. Pergamon Press Ltd, Oxford (1993)Google Scholar
  10. Kalia, N., Balakotaiah, V.: Effect of medium heterogeneities on reactive dissolution of carbonates. Chem. Eng. Sci. (2009). doi: 10.1016/j.ces.2008.10.026
  11. Karcz, Z., Aharonov, E., Ertas, D., Polizzotti, R., Scholz, C.: Deformation by dissolution of a single crystal sodium chloride indenter: an experimental study under the confocal microscope. J. Geophys. Res. (2008). doi: 10.1029/2006JB004630
  12. Lide, D.: CRC Handbook of Chemistry and Physics, 8th edn. CRC Press LLC., Boca Raton, FL (2008)Google Scholar
  13. Panga, M., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. Am. Inst. Chem. Eng. (2005). doi: 10.1002/aic.10574
  14. Plummer, L., Wigley, T., Parkhurst, D.: The kinetics of calcite dissolution in \(\text{ CO }_{2}\)–water systems at \(5\,^{\circ }\) to \(60\,^{\circ }\text{ C }\) and 0.0 to 1.0 atm \(\text{ CO }_{2}\). Am. J. Sci. 278, 179–216 (1978)CrossRefGoogle Scholar
  15. Polak, A., Elsworth, D., Yasuhara, H., Grader, A., Halleck, P.: Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophys. Res. Lett. (2003). doi: 10.1029/2003GL017575
  16. Polak, A., Elsworth, D., Liu, J., Grader, A.: Spontaneous switching of permeability changes in a limestone fracture with net dissolution. Water Resour. Res. (2004). doi: 10.1029/2003WR002717
  17. Siemers, J., Dreybrodt, W.: Early development of karst aquifers on percolation networks of fractures in limestone. Water Resour. Res. 34, 409–419 (1998)CrossRefGoogle Scholar
  18. Timms, N., Healy, D., Reyes-Montes, J., Collins, D., Prior, D.: Paul Young, R. Effects of crystallographic anisotropy on fracture development and acoustic emission in quartz. J. Geophys. Res. (2010). doi: 10.1029/2009JB006765
  19. Volery, C., Davaud, E., Durlet, C., Clavel, B., Charollais, J., Caline, B.: Microporous and tight limestones in the Urgonian formation (late Hauterivian to early Aptian) of the French Jura Mountains: focus on the factors controlling the formation of microporous facies. Sediment. Geol. (2010). doi: 10.1016/j.sedgeo.2010.06.017
  20. White, A., Peterson, M.: Role of reactive-surface-area characterization in geochemical kinetic models. ACS Symp. Ser. (1990). doi: 10.1021/bk-1990-0416.ch035
  21. Yasuhara, H., Elsworth, D.: A numerical model simulating reactive transport and evolution of fracture permeability. Int. J. Numer. Anal. Methods Geomech. (2006). doi: 10.1002/nag.513
  22. Yasuhara, H., Elsworth, D., Polak, A.: A mechanistic model for compaction of granular aggregates moderated by pressure solution. J. Geophys. Res. (2003). doi: 10.1029/2003JB002536
  23. Yasuhara, H., Elsworth, D., Polak, A.: Evolution of permeability in a natural fracture: significant role of pressure solution. J. Geophys. Res. (2004). doi: 10.1029/2003JB002663
  24. Yasuhara, H., Kinoshita, N., Ohfuji, H.: Sung Lee, D., Nakashima, S., Kishida, K.: Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical modeling. Appl. Geochem. (2011). doi: 10.1016/j.apgeochem.2011.07.005
  25. Zhang, X., Spiers, C., Peach, C.: Compaction creep of wet granular calcite by pressure solution at \(28\,^{\circ }\text{ C }\) to \(150\,^{\circ }\text{ C }\). J. Geophys. Res. (2010). doi: 10.1029/2008JB005853
  26. Zhang, Y., Zhang, W., Yang, C.: FEM analysis for influences of stress corrosion and pressure solution on THM coupling in dual-porosity rock mass. Sci. China Tech. Sci. (2011). doi: 10.1007/s11431-011-4437-6

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas P. McGuire
    • 1
  • Derek Elsworth
    • 2
  • Zvi Karcz
    • 3
  1. 1.Department of Energy and Mineral Engineering and G3 CenterPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Energy and Mineral Engineering and G3 CenterPennsylvania State UniversityUniversity ParkUSA
  3. 3.Delek EnergyHerzeliyaIsreal

Personalised recommendations