Skip to main content
Log in

Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Upscaling procedures and determination of effective properties are of major importance for the description of flow in heterogeneous porous media. In this context, we study the statistical properties of effective hydraulic conductivity (K eff) distributions and their dependence on the coarsening scale. First, we focus on lognormal stationary isotropic media. Our results suggest that K eff is lognormally distributed independently on the coarsening scale. The scale dependence of the mean and variance of K eff are in agreement with recent analytical derivations obtained using coarse graining filtering techniques. In the second part, we focus on binary media, analysing the dependence of K eff distributions on the coarsening scale and also on the high-K facies volume fraction p. When p is near the percolation threshold p c, the decrease of the normalized variance with the coarsening scale is remarkably (102 times) slower compared to the situation in which p far from p c, but also compared to the cases of lognormal media studied before. This result permits to assess the degree of difficulty that systems with p near p c pose for upscaling procedures. Also we point out in terms of K eff statistics the relative influence of the coarsening scale and of the high-K facies connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababou R., McLaughlin D.B., Gelhar L.W., Tompson A.F.B.: Numerical imulation of three-dimensional saturated flow in randomly heterogeneous porous media. Transp. Porous Media 4, 549–565 (1989)

    Article  Google Scholar 

  • Abramovich B., Indelman P.: Effective permittivity of log-normal isotropic random-media. J. Phys. A 28, 670–693 (1995)

    Article  Google Scholar 

  • Attinger S.: Generalized coarse graining procedures for flow in porous media. Comput. Geosci. 7, 253–257 (2003)

    Article  Google Scholar 

  • Bauer D., Talon L., Ehrlacher A.: Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment length. ASCE J. Hydraul. Eng. 6, 784–793 (2008)

    Article  Google Scholar 

  • Berkowitz B., Balberg I.: Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29(4), 775–794 (1993)

    Article  Google Scholar 

  • Charlaix E., Guyon E., Roux S.: Permeability of a random array of fractures of widely varying apertures. Transp. Porous Media 2, 31–43 (1987)

    Article  Google Scholar 

  • Chen Y., Durlofsky L.J., Gerritsen M., Wen X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  • Dagan G.: Flow and Transport in Porous Formations. Springer-Verlag, New York (1989)

    Book  Google Scholar 

  • Dagan G.: Higher correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp. Porous Media 12, 279–290 (1993)

    Article  Google Scholar 

  • Davis M.: Production of conditional simulation via the lu triangular decomposition of the covariance matrix. Math. Geol. 19(2), 99–107 (1987)

    Google Scholar 

  • de Dreuzy J.-R., Davy P., Bour O.: Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture, 1 effective connectivity. Water Resour. Res. 37(8), 2065–2078 (2001)

    Article  Google Scholar 

  • de Dreuzy J.-R., Davy P., Bour O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 37(8), 2079–2095 (2001)

    Article  Google Scholar 

  • de Dreuzy J.-R., Davy P., Bour O.: Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour. Res. 38(12), 1276–1284 (2002)

    Article  Google Scholar 

  • de Dreuzy J.-R., de Boiry P., Pichot G., Davy P.: Use of power averaging for quantifying the influence of structure organization on permeability upscaling in on-lattice networks under mean parallel flow. Water Resour. Res. 46, W08519 (2010)

    Article  Google Scholar 

  • De Wit A.: Correlation structure dependence of the effective permeability of heterogeneous porous media. Phys. Fluids 7, 2553–2562 (1995)

    Article  Google Scholar 

  • Desbarats A.J.: Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media. Math. Geol. 24(3), 249–267 (1992)

    Article  Google Scholar 

  • Dietrich C.R.: A simple and efficient space domain implementation of the turning bands method. Water Resour. Res. 31(1), 147–156 (1995)

    Article  Google Scholar 

  • Dykaar B.B., Kitanidis P.K.: Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach: 2. Results. Water Resour. Res. 28(4), 1167–1178 (1992)

    Article  Google Scholar 

  • Eberhard S., Attinger , Wittum G.: Coarse graining for upscaling of flow in heterogeneous porous media. Multiscale Model. Simul. 2, 269 (2004)

    Article  Google Scholar 

  • Fenton G.A., Griffiths D.V.: Statistics of block conductivity through a simple bounded stochastic medium. Water Resour. Res. 26(6), 1825–1830 (1992)

    Google Scholar 

  • Fleckenstein J.H., Fogg G.E.: Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeol. J. 16, 1239–1250 (2008)

    Article  Google Scholar 

  • Guin A., Ritzi R.W. Jr.: Studying the effect of correlation and finite-domain size on spatial continuity of permeable sediments. Geophys. Res. Lett. 35, L10402 (2008)

    Article  Google Scholar 

  • Gutjahr A.L., Gelhar L.W., Bakr A.A., McMillan J.R.: Stochastic analysis of spatial variability in subsurface flow 2: Evaluation and application. Water Resour. Res. 14, 953–959 (1978)

    Article  Google Scholar 

  • Harter T.: Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields. Phys. Rev. E 72, 26120 (2005)

    Article  Google Scholar 

  • Hashin Z., Shtrikman A.: Variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  Google Scholar 

  • Hoeksema R.J., Kitanidis P.K.: Analysis of spatial variability of properties of selected aquifers. Water Resour. Res. 21(4), 563–572 (1985)

    Article  Google Scholar 

  • Hunt, A.G., Ewing, R.: Percolation Theory for Flow in Porous Media, Lecture Notes in Physics, vol. 771, 2nd edn. Springer (2009)

  • Jensen J.L.: Some statistical properties of power averages for lognormal samples. Water Resour. Res. 34(9), 2415–2418 (1998). doi:10.1029/98WR01557

    Article  Google Scholar 

  • Journel, A.G., Deutsch, C.V., Desbarats, A.J.: Power averaging for block effective permeability. Paper presented at 56th California Regional Meeting, SPE, Oakland, California (1986)

  • Knudby C., Carrera J.: On the relationship between indicators of geostatistical, flow and transport connectivity. Adv. Water Resour. 28, 405–421 (2005)

    Article  Google Scholar 

  • Knudby C., Carrera J., Bumgardner J.D., Fogg G.E.: Binary upscaling-the role of connectivity and a new formula. Adv. Water Resour. 29, 590–604 (2006)

    Article  Google Scholar 

  • Landau L.D., Lifshitz E.M.: Electrodynamics of Continuous Media. Pergamon, Tarrytown (1960)

    Google Scholar 

  • Le Ravalec M., Nœtinger B., Hu L.Y.: The FFT moving average (FFT-MA) method: an efficient tool for generating and conditioning Gaussian simulations. Math. Geol. 32(6), 701–723 (1995)

    Article  Google Scholar 

  • Matheron G.: Eléments pour une Théorie des Milieux Poreux. Masson, Paris (1967)

    Google Scholar 

  • Maxwell J.C.: Electricity and Magnetism, 1st ed. Clarendon, Oxford (1873)

    Google Scholar 

  • Neuman S.P., Di Federico V.: Multifaceted nature of hydrogeologic scaling and its interpretation. Rev. Geophys. 41(3), 1014 (2003)

    Article  Google Scholar 

  • Nœtinger B.: The effective permeability of an heterogeneous porous medium. Transp. Porous Media 15, 99–127 (1994)

    Article  Google Scholar 

  • Nœtinger B.: Computing the effective permeability of log-normal permeability fields using renormalization methods. C.R. Acad. Sci. Sci Terre des Planètes 331, 353–357 (2000)

    Google Scholar 

  • Nœtinger B., Jarrige N.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks. J. Comput. Phys. 231(1), 23–38 (2012)

    Article  Google Scholar 

  • Nœtinger B., Artus V., Zargar G.: The future of stochastic and upscaling methods in hydrogeology. solicitated review paper of Hydrogeol. J. 13, 184–201 (2005)

    Google Scholar 

  • Paleologos E.K., Neuman S.P., Tartakovsky D.: Effective hydraulic conductivity of bounded, strongly heterogeneous porous media. Water Resour. Res. 32(5), 1333–1341 (1996)

    Article  Google Scholar 

  • Pozdniakov S., Tsang C.-F.: A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour. Res. 40, W05105 (2004)

    Article  Google Scholar 

  • Renard P, de Marsily G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5–6), 253–278 (1997)

    Article  Google Scholar 

  • Romeu R.K., Nœtinger B.: Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media. Water Resour. Res. 31(4), 943–959 (1995)

    Article  Google Scholar 

  • Sanchez-Vila X., Guadagnini A., Carrera J.: Representative hydraulic conductivities in saturated groundwater flow. Rev. Geophys. 44, RG3002 (2006)

    Article  Google Scholar 

  • Scott D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610 (1979)

    Article  Google Scholar 

  • Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis, London (1992); revised 2nd edition (1994)

  • Stepanyants Y.A., Teodorovich E.V.: Effective hydraulic conductivity of a randomly heterogeneous porous medium. Water Resour. Res. 39(3), 1065 (2003)

    Article  Google Scholar 

  • Sudicky E.A.: A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22, 2069–2082 (1986)

    Article  Google Scholar 

  • Tompson A.F.B., Ababou R., Gelhar L.W.: Implementation of the three-dimensional turning bands random field generator. Water Resour. Res. 25(10), 2227–2243 (1989)

    Article  Google Scholar 

  • Vander Vorst H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Scientific Stat. Comput. 13, 631–644 (1992)

    Article  Google Scholar 

  • Western A.W., Blöschl G., Grayson R.B.: Towards capturing hydrologically significant connectivity in spatial patterns. Water Resour. Res. 37(1), 83–97 (2001)

    Article  Google Scholar 

  • Wen X.H., Gomez Hernandez J.J.: Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183(1–2), 9–32 (1996)

    Google Scholar 

  • Wen X.H., Durlofsky L.J., Edwards M.G.: Use of border regions for improved permeability upscaling. Math. Geol. 35, 521–547 (2003)

    Article  Google Scholar 

  • Zinn B., Harvey C.F.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion and mass transfer in multigaussian and connected conductivity fields. Water Resour. Res. 39(3), 1051 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boschan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschan, A., Nœtinger, B. Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study. Transp Porous Med 94, 101–121 (2012). https://doi.org/10.1007/s11242-012-9991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-9991-2

Keywords

Navigation