Skip to main content
Log in

Free Convection of Non-Newtonian Nanofluids in Porous media with Gyrotactic Microorganisms

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The free convection of non-Newtonian nanofluids along a vertical plate in porous medium is investigated numerically. It is assumed that the medium contains gyrotactic microorganisms along with nanoparticles and the plate is subjected to prescribed temperature, concentration of nanoparticles and density of motile microorganisms. It is further assumed that the plate is impermeable. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformations. The nonlinear ordinary differential equations are then solved by a finite difference numerical method. The effects of controlling parameters on several dimensionless quantities and numbers of our interest are investigated. The numerical results are compared with the published data and an excellent agreement has been found. It is found that nanofluid and bioconvection parameters have strong effects on local Nusselt, Sherwood and density numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(b\) :

Chemotaxis constant

\(\bar{{C}}\) :

Nanoparticle volume fraction (\(\text{ kg}\, \text{ m}^{-3})\)

\(\bar{{C}}_\mathrm{w}\) :

Wall nanoparticle volume fraction (\(\text{ kg}\, \text{ m}^{-3})\)

\(\bar{{C}}_\infty \) :

Ambient nanoparticle volume fraction (\(\text{ kg}\, \text{ m}^{-3})\)

\(D_\mathrm{B}\) :

Brownian diffusion coefficient (\(\text{ m}^{2}\,\text{ s}^{-1})\)

\(D_n \) :

Diffusivity of microorganisms (\(\text{ m}^{2}\,\text{ s}^{-1})\)

\(D_\mathrm{T} \) :

Thermophoretic diffusion coefficient (\(\text{ m}^{2}\,\text{ s}^{-1})\)

\(Ec\) :

Eckert number

\(f(\eta )\) :

Dimensionless stream function

\(g\) :

Acceleration due to gravity (\(\text{ m}\,{\text{ s}}^{-2})\)

\(k\) :

Thermal conductivity (\(\text{ m}^{2}\,\text{ s}^{-1})\)

\(K\) :

Consistency coefficient (\(\text{ kg}\,{\text{ m}}^{-1}\text{ s}^{-1})\)

\(K_0\) :

Permeability of the porous medium (\(\text{ m}^{2})\)

\(L\) :

Characteristic length (\(\text{ m}^{2})\)

\(Lb\) :

Bioconvection Lewis number

\(Le\) :

Lewis number

\(m\) :

Power law index

\(\bar{{n}}_n \) :

Volume fraction of motile microorganisms (\(\text{ kg}\, \text{ m}^{-3})\)

\(Nb\) :

Brownian motion parameter

\(Nn_{\bar{{x}}} \) :

Local density number of the motile microorganisms

\(Nt\) :

Thermophoresis parameter

\(Nu_{\bar{{x}}} \) :

Local Nusselt number

\(Pe\) :

Bioconvection Péclet number

\(Pr \) :

Prandtl number

\(\bar{p}\) :

Pressure (Pa)

\(\bar{q}_\mathrm{m} \) :

Wall mass flux (\(\text{ kg}\,\text{ m}^{-2}\, \text{ s}^{-1})\)

\(\bar{{q}}_n \) :

Wall motile microorganisms flux (\(\text{ kg}\,{\text{ m}}^{-2} \,\text{ s}^{-1})\)

\(\bar{q}_\mathrm{w} \) :

Wall heat flux (\(\text{ J}\,{\text{ m}}^{-2}\, \text{ s}^{-1})\)

\(Ra\) :

Rayleigh number for the porous medium

\(Ra_{\bar{{x}}} \) :

Local Rayleigh number for the porous medium

\(Rb\) :

Bioconvection Rayliegh number

\(Sh_{\bar{{x}}} \) :

Local Sherwood number

\(\bar{{T}}\) :

Nanofluid temperature (K)

\(\bar{{T}}_\mathrm{w} \) :

Wall temperature (K)

\(\bar{{T}}_\infty \) :

Ambient temperature (K)

\(\bar{u},\;\bar{v}\) :

Velocity components along \(\bar{x}\)- and \(y\)-axes (\(\text{ m}\,{\text{ s}}^{-1})\)

\(\tilde{\bar{u}},\;\tilde{\bar{v}}\) :

Average directional swimming velocity of microorganisms along \(\bar{x}\)- and \(y\)-axes (m s\(^{-1})\)

\(W_\mathrm{c}\) :

Constant maximum cell swimming speed (\(\text{ m}\, \text{ s}^{-1})\)

\(\bar{x}, \bar{y}\) :

Cartesian coordinates (\(\bar{x}\)-axis is aligned along the stretching surface and \(y\)-axis is normal to it) (m)

\(\alpha _\mathrm{m} \) :

Effective thermal diffusivity of the porous medium (\(\text{ m}^{2}\,\text{ s}^{-1})\)

\(\phi (\eta )\) :

Rescaled nanoparticle volume fraction

\(\eta \) :

similarity variable

\(\gamma \) :

Average volume of a microorganism (\(\text{ kg}\,\text{ m}^{-3})\)

\(\theta (\eta )\) :

Dimensionless temperature

\(\nu \) :

Kinematic viscosity of the fluid (\(\text{ m}^{2}\, \text{ s}^{-1})\)

\(\rho _\mathrm{f} \) :

Fluid density (\(\text{ kg}\,\text{ m}^{-3})\)

\(\rho _\mathrm{p}\) :

Nanoparticle mass density (\(\text{ kg}\, \text{ m}^{-3}\))

\(({\rho c})_\mathrm{f}\) :

Heat capacity of the fluid (\(\text{ J}\, \text{ kg}^{-3}\,\text{ K}^{-1}\))

\(({\rho c})_\mathrm{p}\) :

Heat capacity of the nanoparticle material (\(\text{ J}\,\text{ kg}^{-3}\,\text{ K}^{-1})\)

\(\tau \) :

Ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid

\(\sigma (\eta )\) :

Rescaled density of motile microorganisms

\(\psi \) :

Stream function

References

  • Avramenko, A.A., Kuznetsov, A.V.: The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layers: effect of vertical throughflow. Transp. Porous. Med. 65, 159–176 (2006)

    Google Scholar 

  • Avramenko, A.A., Kuznetsov, A.V.: Bio-thermal convection caused by combined effects of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int. J. Numer. Method. H. 20, 157–173 (2010)

    Article  Google Scholar 

  • Aziz, A., Khan, W.A., Pop, I.: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int. J. Therm. Sci. 56, 48–57 (2012)

    Article  Google Scholar 

  • Cheng, P., Minkowycz, W.J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82, 2040–2044 (1977)

    Article  Google Scholar 

  • Chen, H.T., Chen, C.K.: Free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium. ASME J. Heat Transf. 110, 257–260 (1988)

    Article  Google Scholar 

  • Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, 1995; ASME, FED 231/MD 66, 99–105 (1995)

  • Das, S.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  • Daungthongsuk, W., Wongwises, S.: A critical review of convective heat transfer nanofluids. Renew. Sustain. Energy Rev. 11, 797–817 (2007)

    Article  Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Li, S., Yu, Y., Thompson, L.J.: Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  • Geng, P., Kuznetsov, A.V.: Effect of small solid particles on the development of bioconvection plumes. Int. Commun. Heat Mass Transf. 31, 629–638 (2004)

    Article  Google Scholar 

  • Geng, P., Kuznetsov, A.V.: Settling of bidispersed small solid particles in a dilute suspension containing gyrotactic microorganisms. Int. J. Eng. Sci. 43, 992–1010 (2005a)

    Article  Google Scholar 

  • Geng, P., Kuznetsov, A.V.: Introducing the concept of effective diffusivity to evaluate the effect of bioconvection on small solid particles. Int. J. Transp. Phenom. 7, 321–338 (2005b)

    Google Scholar 

  • Hady, F.M., Ibrahim, F.S., Abdel-Gaied, S.M., Eid, M.R.: Boundary-layer non-Newtonian flow over vertical plate in porous medium saturated with nanofluid. Appl. Math. Mech. Engl. Ed. 32(12), 1577–1586 (2011)

    Article  Google Scholar 

  • Hillesdon, A.J., Pedley, T.J.: Bioconvection in suspensions of oxytactic bacteria: linear theory. J. Fluid Mech. 324, 223–259 (1996)

    Article  Google Scholar 

  • Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  Google Scholar 

  • Kairi, R.R., Murthy, P.V.S.N.: Effect of melting on mixed convection heat and mass transfer in a non-newtonian fluid saturated non-darcy porous medium. ASME J. Heat Transf. 134, 042601–1 (2012)

    Article  Google Scholar 

  • Kuznetsov, A.V.: The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur. J. Mech. B-Fluids. 25, 223–233 (2003).

    Google Scholar 

  • Kuznetsov, A.V.: The onset of bioconvection in a suspension of gyrotactic microorganisms in a fluid layer of finite depth heated from below. Int. Commun. Heat Mass Transf. 32, 574–582 (2005a)

    Article  Google Scholar 

  • Kuznetsov, A.V.: Investigation of the onset of thermo-bioconvection in a suspension of oxytactic microorganisms in a shallow fluid layer heated from below. Theor. Comput. Fluid Dyn. 19, 287–299 (2005b)

    Article  Google Scholar 

  • Kuznetsov, A.V.: The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur. J. Mech. B 25, 223–233 (2006)

    Article  Google Scholar 

  • Kuznetsov, A.V.: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 37, 1421–1425 (2010)

    Article  Google Scholar 

  • Kuznetsov, A.V.: Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Eur. J. Mech. B 30(2), 156–165 (2011)

    Article  Google Scholar 

  • Kuznetsov, A.V., Avramenko, A.V.: Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int. Commun. Heat Mass Transf. 31, 1–10 (2004)

    Article  Google Scholar 

  • Kuznetsov, A.V., Geng, P.: The interaction of bioconvection caused by gyrotactic micro-organisms and settling of small solid particles. Int. J. Numer. Methods Heat Fluid Flow 15, 328–347 (2005)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  • Masuda, H., Ebata, A., Teramea, K., Hishinuma, N.: Altering the thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 4(4), 227–233 (1993)

    Article  Google Scholar 

  • Minsta, H.A., Roy, G., Nguyen, C.T., Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  Google Scholar 

  • Pak, B.C., Cho, Y.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1988)

    Article  Google Scholar 

  • Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Shenoy, A.V.: Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transf. 24, 101–190 (1994)

    Article  Google Scholar 

  • Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  • Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)

    Article  Google Scholar 

  • Wang, X.Q., Mujumdar, A.S.: A review on nanofluids—part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008a)

    Google Scholar 

  • Wang, X.Q., Mujumdar, A.S.: A review on nanofluids—part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008b)

    Article  Google Scholar 

  • Xuan, Y., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125, 151–155 (2003)

    Article  Google Scholar 

  • Yih, K.H.: Uniform lateral mass flux effect on natural convection of non-Newtonian fluids over a cone in porous media. Int. Comm. Heat Mass Transf. 25, 959–968 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, W.A., Uddin, M.J. & Ismail, A.I.M. Free Convection of Non-Newtonian Nanofluids in Porous media with Gyrotactic Microorganisms. Transp Porous Med 97, 241–252 (2013). https://doi.org/10.1007/s11242-012-0120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0120-z

Keywords

Navigation