Skip to main content
Log in

Simulation of Fluid Flow on Fractures and Implications for Reactive Transport Simulations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The diverse numerical simulation techniques employed to predict fluid flow properties of fractures yield differing results which limits their applicability for reactive transport simulations. Basically the fluid flow simulation techniques can be divided in two groups: (i) techniques that yield average fluid flow characteristics and (ii) techniques that produce space-resolved properties. These differences may have substantial impact on the reactive transport simulations but may also depend on the fracture characteristics. For this reason, a sensitivity analysis of the geometrical properties of fractures on the fluid flow properties is conducted and evaluated with respect to their impact on reactive transport modeling. Although employing space-resolved simulation techniques, the results of the tests show average values for permeability and fluid velocity that are comparable to previous studies that used other simulation techniques. Observed fluid flow channeling appears to be related to fracture surfaces matching and anisotropy. However, average flow velocities at potential sites for reactive transport differ up to a factor of five from the average ones for the entire fracture. Furthermore, extreme values at reactive transport sites may differ even more and the flow may be directed against the applied pressure gradient. For studies concerned with simulation of reactive transport, these deviations are crucial and should be explicitly considered in the calculations. Hence space-resolved fluid flow simulations should be employed for the simulation of reactive transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Omari, A., Masad, E.: Three dimensional simulation of fluid flow in X-ray CT images of porous media. Int. J. Numer. Anal. Methods Geomech. 28(13), 1327–1360 (2004)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Martys, N.S.: Virtual permeametry on microtomographic images. J. Petrol. Sci. Eng. 45(1–2), 41–46 (2004)

    Article  Google Scholar 

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  Google Scholar 

  • Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92(B2), 1337–1347 (1987)

    Article  Google Scholar 

  • Brown, S.R.: Transport of fluid and electric current through a single fracture. J. Geophys. Res. 94(B7), 9429–9438 (1989)

    Article  Google Scholar 

  • Brown, S.R.: Measuring the dimension of self-affine fractals: examples of rough surfaces. In: Barton, C.A., La Pointe, P.R. (eds.) Fractals in the Earth Sciences, pp. 77–87. Plenum Press, New York (1995a)

    Google Scholar 

  • Brown, S.R.: Simple mathematical model of a rough fracture. J. Geophys. Res. 100(B4), 5941–5952 (1995b)

    Article  Google Scholar 

  • Brown, S.R., Scholz, C.H.: Broad bandwidth of the topography of nature rock surfaces. J. Geophys. Res. 90, 12575–12582 (1985)

    Article  Google Scholar 

  • Brown, S.R., Scholz, C.H.: Closure of rock joints. J. Geophys. Res. 91(B5), 4939–4948 (1986)

    Article  Google Scholar 

  • Brown, S.R., Stockman, H.W., Reeves, S.J.: Applicability of the Reynolds equation for modeling fluid flow between rough surfaces. Geophys. Res. Lett. 22(18), 2537–2540 (1995)

    Article  Google Scholar 

  • Bruderer-Weng, C., Cowie, P., Bernabé, Y., Main, I.: Relating flow channelling to tracer dispersion in heterogeneous networks. Adv. Water Resour. 27(8), 843–855 (2004)

    Article  Google Scholar 

  • Crandall, D., Bromhal, G., Karpyn, Z.T.: Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. Int. J. Rock Mech. Mining. Sci. 47, 784–796 (2010)

    Article  Google Scholar 

  • d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360(1792), 437–451 (2002)

    Article  Google Scholar 

  • Dijk, P.E., Berkowitz, B.: Three-dimensional flow measurements in rock fractures. Water Resour. Res. 35(12), 3955–3959 (1999)

    Article  Google Scholar 

  • Eker, E., Akin, S.: Lattice boltzmann simulation of fluid flow in synthetic fractures. Transp. Porous Med. 65(3), 363–384 (2006)

    Article  Google Scholar 

  • Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I., Soliman, H.: Roughness parameters. J. Mater. Process. Technol. 123(1), 133–145 (2002)

    Article  Google Scholar 

  • Ginzburg, I., d’Humieres, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 30 (2003)

    Article  Google Scholar 

  • Ginzburg, I., Steiner, K.: Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comput. Phys. 185(1), 61–99 (2003)

    Article  Google Scholar 

  • Glover, P.W.J., Matsuki, K., Hikima, R., Hayashi, K.: Synthetic rough fractures in rocks. J. Geophys. Res. 103(B5), 9609–9620 (1998)

    Article  Google Scholar 

  • Hilgers, C., Dilg-Gruschinski, K., Urai, J.L.: Microstructural evolution of syntaxial veins formed by advective flow. Geology 32(3), 261–264 (2004)

    Article  Google Scholar 

  • Jessell, M.W., Cox, S.J.D., Schwarze, P., Power, W.L.: The anisotropy of surface roughness measured using a digital photogrammetric technique. In: Ameen, M.S. (ed.) Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis, vol. 92. Geological Society, London, Special Publications, vol. 1, pp. 27–37 (1995)

  • Kehrwald, D.: Parallel lattice Boltzmann simulation of complex flows. In: Berichte des Fraunhofer ITWM, vol. 61. p. 12. Kaiserslautern (2004)

  • Keller, A.A., Roberts, P.V., Blunt, M.J.: Effect of fracture aperture variations on the dispersion of contaminants. Water Resour. Res. 35(1), 55–63 (1999)

    Article  Google Scholar 

  • Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381–400 (2001)

    Article  Google Scholar 

  • Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K.: 3D simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBE solver. J. Soils Sedim 1–11 (2011)

  • Kim, I., Lindquist, W.B., Durham, W.B.: Fracture flow simulation using a finite-difference lattice Boltzmann method. Phys. Rev. E 67(4), 46708 (2003)

    Article  Google Scholar 

  • Kolditz, O.: Non-linear flow in fractured rock. Int. J. Numer. Methods Heat Fluid Flow 11(6), 547–575 (2001)

    Article  Google Scholar 

  • Lomize, G.M.: Flow in Fractured Rocks (in Russian). Gosenergoizdat, Moscow (1951)

    Google Scholar 

  • Louis, C.: Strömungsvorgänge in klüftigen Medien und ihre Wirkung auf die Standsicherheit von Bauwerken und Böschungen im Fels. Technische Hochschule Karlsruhe (1967)

  • Maini, Y.N.: In Situ Hydraulic Parameters in Jointed Rock-Their Measurement and Interpretation. Imperial College of Science and Technology, London (1971)

    Google Scholar 

  • Méheust, Y., Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures. J. Geophys. Res. 106(B2), 2089–2102 (2001)

    Article  Google Scholar 

  • Méheust, Y., Schmittbuhl, J.: Scale effects related to flow in rough fractures. Pure Appl. Geophys. 160(5), 1023–1050 (2003)

    Article  Google Scholar 

  • Moreno, L., Tsang, C.F.: Flow channeling in strongly heterogeneous porous media: a numerical study. Water Resour. Res. 30(5), 1421–1430 (1994)

    Article  Google Scholar 

  • Mourzenko, V., Thovert, J.F., Adler, P.: Permeability of a single fracture; validity of the Reynolds equation. J. Phys. II 5(3), 465–482 (1995)

    Article  Google Scholar 

  • Narváez, A., Zauner, T., Raischel, F., Hilfer, R., Harting, J.: Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations. arXiv 1005, 1.0 (2010)

  • Neretnieks, I., Eriksen, T., Tähtinen, P.: Tracer movement in a single fissure in granitic rock: some experimental results and their interpretation. Water Resour. Res. 18(4), 849–858 (1982)

    Article  Google Scholar 

  • Neuville, A., Toussaint, R., Schmittbuhl, J.: Hydrothermal coupling in a self-affine rough fracture. Phys. Rev. E 82(3), 036317 (2010)

    Article  Google Scholar 

  • Neuville, A., Toussaint, R., Schmittbuhl, J.: Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures. Geophys. J. Int. (2011)

  • Ogilvie, S.R., Isakov, E., Glover, P.W.J.: Fluid flow through rough fractures in rocks. II: a new matching model for rough rock fractures. Earth Planetary Sci. Lett. 241, 454–465 (2006)

    Article  Google Scholar 

  • Oron, A.P., Berkowitz, B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)

    Article  Google Scholar 

  • Pan, C., Luo, L.S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35(8–9), 898–909 (2006)

    Article  Google Scholar 

  • Plouraboué, F., Kurowski, P., Hulin, J.P., Roux, S., Schmittbuhl, J.: Aperture of rough cracks. Phys. Rev. E 51(3), 1675 (1995)

    Article  Google Scholar 

  • Prandtl, L., Oertel, H.: Führer durch die Strömungslehre, vol. 10. Auflage. Vieweg, Braunschweig (2001)

  • Pyrak-Nolte, L.J., Cook, N.G.W., Nolte, D.D.: Fluid percolation through single fractures. Geophys. Res. Lett. 15(11), 1247–1250 (1988)

    Article  Google Scholar 

  • Rasmuson, A., Neretnieks, I.: Radionuclide transport in fast channels in crystalline rock. Water Resour. Res. 22(8), 1247–1256 (1986)

    Article  Google Scholar 

  • Renshaw, C.E.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. 100, 24629–24636 (1995)

    Article  Google Scholar 

  • Romm, E.: Flow characteristics of fractured rocks (in Russian). Nedra, Moscow (1966)

    Google Scholar 

  • Schmittbuhl, J., Gentier, S., Roux, S.: Field measurements of the roughness of fault surfaces. Geophys. Res. Lett. 20(8), 639–641 (1993)

    Article  Google Scholar 

  • Schmittbuhl, J., Steyer, A., Jouniaux, L., Toussaint, R.: Fracture morphology and viscous transport. Int. J. Rock Mech. Mining Sci. 45(3), 422–430 (2008)

    Article  Google Scholar 

  • Schulz, V., Kehrwald, D., Wiegmann, A., Steiner, K.: Flow, heat conductivity, and gas diffusion in partly saturated microstructures. In: Simulation of Complex Flows (CFD), Wiesbaden 2005. Fraunhofer ITWM Kaiserslautern

  • Snow, D.T.: A Parallel Plate Model of Permeable Fractured Media. Ph. D. Thesis, University of California, Berkeley, California (1965)

  • Sukop, M.C., Thorne, D.T.J.: Lattice Boltzmann Modeling. Springer, Heidelberg (2006)

    Google Scholar 

  • Taylor, W.L., Pollard, D.D., Aydin, A.: Fluid flow in discrete joint sets: field observations and numerical simulations. J. Geophys. Res. 104(B12), 28,983–929,006 (1999)

    Article  Google Scholar 

  • Thömmes, G., Becker, J., Junk, M., Vaikuntam, A.K., Kehrwald, D., Klar, A., Steiner, K., Wiegmann, A.: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228(4), 1139–1156 (2009)

    Article  Google Scholar 

  • Thömmes, G., Becker, J., Junk, M., Vaikuntam, A., Kehrwald, D., Klar, A., Steiner, K., Wiegmann, A.: Numerical investigation of a combined lattice Boltzmann-level set method for three-dimensional multiphase flow. Int. J. Comput. Fluid Dynam. 23(10), 687–697 (2010)

    Article  Google Scholar 

  • Tsang, C.F., Neretnieks, I.: Flow channeling in heterogeneous fractured rocks. Rev. Geophys. 36(2), 275–298 (1998)

    Article  Google Scholar 

  • van Genabeek, O., Rothman, D.H.: Critical behavior in flow through a rough-walled channel. Phys. Lett. A 255(1–2), 31–36 (1999)

    Article  Google Scholar 

  • Walsh, J.B., Brace, W.F.: The effect of pressure on porosity and the transport properties of rock. J. Geophys. Res. 89(B11), 9425–9431 (1984)

    Article  Google Scholar 

  • Wang, J.G., Leung, C.F., Chow, Y.K.: Numerical solutions for flow in porous media. Int. J. Numer. Anal. Methods Geomech. 27(7), 565–583 (2003)

    Article  Google Scholar 

  • Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. Proc. R. Soc. Lond A 316(1524), 97–121 (1970)

    Google Scholar 

  • Wiegmann, A.: Computation of the permeability of porous materials from their microstructure by FFF-Stokes. In: Prätzel-Wolters, D. (ed.) Berichte des Fraunhofer ITWM, p. 24. ITWM, Kaiserslautern (2007)

  • Wildenschild, D., Vaz, C.M., Rivers, M.L., Rikard, D., Christensen, B.S.B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3–4), 285–297 (2002)

    Article  Google Scholar 

  • Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)

    Article  Google Scholar 

  • Yang, C., Tartaglino, U., Persson, B.: Influence of surface roughness on superhydrophobicity. Phys. Rev. Lett. 97(11), 116103 (2006)

    Article  Google Scholar 

  • Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Med. 23(1), 1–30 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge helpful reviews by two anonymous reviewers who made valuable suggestions to improve the manuscript. This study is carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdöl- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Oliver Schwarz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (XLSX 12 kb)

ESM 2 (XLSX 16 kb)

ESM 3 (XLSX 14 kb)

ESM 4 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, JO., Enzmann, F. Simulation of Fluid Flow on Fractures and Implications for Reactive Transport Simulations. Transp Porous Med 96, 501–525 (2013). https://doi.org/10.1007/s11242-012-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0103-0

Keywords

Navigation